FOF Developer's Guide

The compact reference to Joomla!'s Rapid
Application Development framework

Nicholas Dionysopoulos

FOF Developer's Guide: The compact reference to Joomla!'s Rapid

Application Development framework
Nicholas Dionysopoulos

Publication date December 2013
Copyright © 2013 Akeeba Ltd

The contents of thisdocumentation are subject to copyright |aw and are made avail able under the Joomlal Electronic Documentation License (JEDL)
[http://docs.,joomla.org/JEDL] unless otherwise stated. Y ou may find the JEDL Frequently Asked Questions [http://docs.joomla.org/JEDL/FAQ]
useful in determining if your proposed use of this material is alowed. If you have any questions regarding licensing of this material please contact
legal @opensourcematters.org [mailto:legal @opensourcematters.org]. If you wish to report a possible violation of the license terms for the material
on this site then please contact | egal @opensourcematters.org [mailto:legal @opensourcematters.org).

http://docs.joomla.org/JEDL
http://docs.joomla.org/JEDL
http://docs.joomla.org/JEDL/FAQ
http://docs.joomla.org/JEDL/FAQ
mailto:legal@opensourcematters.org
mailto:legal@opensourcematters.org
mailto:legal@opensourcematters.org
mailto:legal@opensourcematters.org

Table of Contents

O g eTe (8 eiT oo T O PP UPPPTT 1
O [L oo (0 1o o RSP PP PPPPPT 1
L0 WL 1S FOF .ttt e e et ettt et e e e e e e e eabba e e e e e eaaennne 1

1.2. Free Software means COlaborationioiiuiioiii et 1

1.3. Preface to this dOCUMENTALIONiiiiiiiie it eeeens 1

2. Getting started With FORFo et 2
2.1. Download and inStall FOR ...ttt e 2

2.2. USING It 1N YOUI EXEEBNSION ...ttt ettt et ettt ettt e e e na e e ennens 2

2.3. Installing FOF With YOUr COMPONENToiieitieieiii et eeaee e eenens 2

2.4, SaMPIE APPHICALIONS ..ottt ettt et et e e e e e 5

3. KBY FEBIUIES ...ttt et ettt 6
2. Component OVENVIEW aNd FEFEIEINCE ittt e et e et e et e e e b 8
1Y oo L= £ TP UPPPTR 10
1.1 MOOE! BENAVIOUISceeiieeiiii ettt ettt e et e e et et e e et et e e e eaneaeaees 11
00 I 1 g 1 {0 L8 o 1 o) o TSP TP PPT O POPPPTORPPPPN 11

1.1.2. FOF standard BEhaVIOrSiiiiiiieiiiiie ettt 11

O B o o1 = PP PP 11

1.0.2.2. @N@DIEU ... e 12

I B2 R 11 = £ TSSO 12

L1024, TANQUAGE «..eeveeeeeie ettt ettt e ettt e ettt e et e e e e e e e een 14

L1125, PIIVELE et 15

1.1.3. Adding an Existing Behavior to aModelccooviiiiiiiiii 15

1.1.4. Creating @ NEW BENAVIONccouuuiiiiiiii e e 16

1.1.5. Available Events for Model BEhaViorsc..uviiiiiiiiiiiii e 16

1.1.6. New Behavior Example: PUDISNEiiiiiiiii e 20

P - o] = RSO PTTTRTR 22
2.1 TADIE BENAVIOIS ...ttt et 26

P2 N 1 01 (0o Vw1 o] o TSP PP PP TP UPPPTTNN 26

2.1.2. FOF Standard BEhAVIOISuuuiiiiiiieeeiii ettt ettt et 27

2.1.3. Add an existing Behavior t0 @ Tablecooiiiiiiiiiiie e 27

2.1.4. Creating a New BehaViorooiiiiiiiii e 28

2.1.5. Available Events for Table BENAVIOrScoouuiiiiiiiiiiicii e 28

2.2. Simple object relation MEPPINGu ittt e e e e e e e e 33

A 0o 1= £ U PP PR TSU PR 35
R 1= T O TP OPPPTRR 37
I DI E o (ol = S ST PP PPPPTTI 40
5.1. Transparent aUtNENtiCAIONuuuiiiiiii et e e 40

B. TOOIDA ...ttt ettt ettt e e e 42
A = 11 A TSP PPTTPTPR R RSSPPPUPPTN 44
8. ACL CONFIGUIBLIONeett et eett ettt ettt ettt e e et et e e et et e e et e bt e e e e e tb e e e eebt e neeeeneaeeees 46
9. The database cursor iterator (FOFDatabhaSElterafor)oeveruueeiiiii e 48
FO. ULIHITY ClASSES ..ottt ettt e e et e ettt e e et b e e e e rb e e e e ra s 48
10.1. The installation SCript NEIPEYooeue e 49

10.2. The database schema installer / updater / removal Class..........coocvevviiiiiiiiiiiiii e, 56

10.3. The update MOE]l NEIPENvi e 59

3. FEALUIES TEFEIEINCE ...ttt ettt e ettt e et et et e n e eaaas 62
1. ConfigUIING MV C ...ttt e et e et e e e e e 62
1.0, THE BCONFIQ @ITAY eeeeeetiiiee e e ettt e ettt e e et ettt e e e e e e e e e e bbb e e e e e e e eeabbban e e e aeaeas 62

1.2. The FOFXMI Il e e 62
1.2.1. DiSPAChEr SEEINGS ... eevvuueeeetiiet et ettt ettt ettt e e et eeeaa s 64

1.2.2. TADIE SEIINGS ... ceeeeiie ettt e 64

FOF Developer's Guide

R YT YV 1] To P 65
1.3, CoNfigUuration SEHINGSvuuiiiiieiiiee e e e e e e e e e e e e e et e e et e ean s 66
A G 1 I o 1 T PP PPTPP 68
A I e 0 1 1Y 0= T PP PPPP 69
2.1.1. The different form tYPES ..ouu i e e 69
2.0.2. BIrOWSE FOIMS ..ottt et e e et e e e eaa e eees 69
2.1.2.1. FOrM arDULESui e e 70
P20 e 2 == o B (010 1O 71
P20 e B I o g I 111 o ==~ 71

P2 o] A {10 1 PP 72
P2 O I o g I 11 1 o =~ 73
2.1.5. FOrmatting YOoUr FOMMSciuuiiii e e e e e e e e e e aens 74
2.1.5.1. Using Bootstrap-powered tabscooeviiiiiiiiiiii e 74
2.1.5.2. Assigning classes and IDSto <fieldSet>Sccocvviiiiiiiiiiiiii e, 74
2.1.5.3. Mixing XML forms with PHP-based view templates...........ccoceeveviiieinnnennnnn. 75

2.2. Header fields type rEfEIENCEcivi e e e e e e e eeen 75
2.2.1. How header fIeldS WOIKcoouuiiiiiiiiiie e 75
2.2.2. Common fields for @l tYPESc.uuiiii e 75
2.2.2.1. Additional attributes for search box filtering widgets............ccoovvviiiiiiieninns 76
2.2.2.2. Additional attributes for drop-down list filtering widgets...........cccoveviiiieinnnn. 76
PG B o = o I Y/ o= PSP 77
2231 ACCESIOVEL oo 77
2.2.3.2. Tl e 77
2233 FIEAAE ...ovvieeeei e 77
2.2.3.4. FIeldsearchabl@uiiiiiii e 77
2.2.35. FIElASElECIADIE ... 77
2.2.3.6. TIEIASHl .oieeiiieiie e 78
PG B A 1) (0= = PP 78
2.2.3.8. fIltersearchabl@vuiiii 78
2.2.3.9. fIErsalectable ...ccoeveeeee e 78
2.2.3.00. FHEISHl cevveieeeiie e 78
A T T 0o U o = 78
2.2.3.02. MOUEL ..t aaa 78
A G T o (0 (= 1 0T PN 79
22304, PUDIISNEA ..oviii e e 79
PR B LT (1S = [o PSP 79

2.3. FOrm fieldS tyPe FEfEIENCE ... ove it e e e e 79
2.3.1. Common fields fOr @l TYPESccuuiiii i 79
2.3, 2. FIE O tYPES it 80
2.3.2.1. ACCESIOVEL ..o 80
2.3.2.2. BULLON oeet e 80
2.3.2.3. caChehandleroouniiii 81
2.3.2.4. CAlONTAN ...ooeviiieeii e aaa 81
2.3.2.5. CAPICNA . oeeciiccec 81

P I ST v 0= o2 {0 PP 81
2.3.2.7. COMPONENES .. vuieititee ittt e e e e e e e e e e e e e e e e et e aeeneen 82
2.3.2.8. B0 e 82
2.3.2.9. BMAIL e 82
2.3.2.10. groupedBULLONcceui e e 83
G 0| (010 = o 1= PN 83

P B R 11T (o = o PP 83
T G T 1117 [TP 83
23204, IMBGELISE i 83
N LT 1411~ [~ PPN 84

FOF Developer's Guide

B LT T 0o U= o = 84

P2 O T 1 PP 84

P I S 111 o[- PR 85

2.3.2.09. MOUEL ..t aaan 86

G0 Mo (0 (= g1 0T PN 86

R T o= == Yo (o 87

7 o 11 o 0= 87

2.3.2.23. PUDIISNEA ..ovieeei e e 87

23224, TAIO coeei e 88

2.3.2.25, TUIES ..ottt 88

2.3.2.26. SEIECITOW ...ttt 88

2.3.2.27. SESSIONNANAIET ...oeviiieeei e 88

2.3, 2. 28, BN ittt 88

2.3.2.29. SOl ciiitiie et e et a e aan 88

2.3.2.30.] et 88

P 1 I (=4 A PR 89

2.3.2.31.1. Field tag replacement for text fieldscccooeveviniiii i, 89

2.3.2.32. TEXEBIEA ..ev ettt en e 89

2.3, 2,38, i oot e 90

PR I T (111740 P 90

2.3.2.35. UMl e 90

2.3.2.30. USES eituieetiit ettt e et e et e e et e e et e aae 90

N T oS3 0o B o 92
1. Creating a slug from muUItiple COIUMNSoouiii e 92
2. One to many database table relationship deletioncccouiiiiiii i 92
3. Creating a bare view (a view without a database tabl€)ccoeeiiiiiiii i, 93
4, Transparent aUtNENTICALIONiiiiieiii e e e e e e e e e e et e e e aeeeat e e e et e aaanaaes 94
5. Creating a cpanel (CONtrol Panel) VIEWuiiiiiiiiii e e e e e 96
6. AUtOMELIC FIEld VAlTAAHON .. .ceeviiee e e e e e e e s 97
7. Ordering submenu items without Writing any COOEcovvviiiiiieii i 98
F N T 1 oo LS PP 99
Y T o = TN o U= 0] = £ PP 99

List of Figures

1. FOF Developer's GUIAE COVEYN IMAGEceeurueeiiti ettt e e ettt e e et e e et e et et e e e e et e e e eete e e eeebaaaeeenes

Vi

List of Tables

2.1. Table foo
2.2. Table bar

2.3. View temMPlaleS TOCAHIONSuueeiitie ettt et e et e e et e e et et e e e et e e e e et e e e e enanas

Vii

Chapter 1. Introducing FOF

1. Introduction
1.1. What is FOF

FOF (Framework on Framework) isarapid application development framework for Joomlal. Unlike other frameworks
it is not standalone. It extends the Joomla! Platform instead of replacing it, featuring its own forked and extended
version of the MV C classes, keeping a strong semblance to the existing Joomlal MV C API. This meansthat you don't
have to relearn writing Joomla! extensions. Instead, you can start being productive from the first day you're using it.
Our goal isto aways support the officially supported LTS versions of Joomlal and not break backwards compatibility
without a clear deprecation and migration path.

FOF is compatible with the database technol ogies used by Joomlal itself: MySQL, SQL Server (and Windows Azure
SQL), PostgreSQL. In most cases you can write a component in one database server technology and have it run on
the other database server technologies with minimal or no effort.

FOF is currently used by free and commercial components for Joomlal by an increasing number of developers.

1.2. Free Software means collaboration

The reason of existence of FOSS (Free and Open Source Software) is collaboration between developers. FOF is no
exception; it exists because and for the community of Joomla! developers. It is provided free of charge and with all
of the freedoms of the GPL for you to benefit. And in true Free Software spirit, the community aspect is very strong.
Participating is easy and fun.

If you want to discuss FOF there is a Google Groups mailing list [https://groups.google.com/fo-
rum/?hl=en& fromgroups#! forum/frameworkonframework]. This is a peer discussion group where devel opers work-
ing with FOF can freely discuss.

If you have afeature proposal or havefound abug, but you're not sure how to codeit yourself, pleasereport it onthelist.

If you have a patch feel free to fork this project on GitHub [https://github.com/akeebalfof] (you only need a free
account to do that) and send a pull request. Please remember to describe what you intended to achieve to help me
review your code faster.

If you've found a cool hack (in the benign sense of the word, not the malicious one...), something missing from the
documentation or have atip which can help other developers fedl free to edit the Wiki. We're all grown-ups and pro-
fessionals, | believe thereisno need of policing thewiki edits. If you're unsure about whether awiki edit isappropriate,
please ask on thelist.

1.3. Preface to this documentation

FOF isarapid application devel opment framework for Joomla!. Instead of trying to completely replace Joomlal’sown
API (formerly known as the Joomlal Platform) it builds upon it and extends it both in scope and features. In the end
of the day it enables agony-free extension development for the Joomlal CMS.

In order to exploit the time-saving capabilities of the FOF framework to the maximum you need to understand how it's
organized, the conventions used and how its different pieces work together. This documentation attempts to provide
you with this knowledge.

https://groups.google.com/forum/?hl=en&fromgroups#!forum/frameworkonframework
https://groups.google.com/forum/?hl=en&fromgroups#!forum/frameworkonframework
https://groups.google.com/forum/?hl=en&fromgroups#!forum/frameworkonframework
https://github.com/akeeba/fof
https://github.com/akeeba/fof

Introducing FOF

Aswith every piece of documentation we had to answer two big questions: where do we start and how do we structure
the content. The first question was easy to answer. Having given the presentation of the FOF framework countless
times we have developed an intuitive grasp of how to start presenting it: from the abstract to the concrete.

The second question was harder to answer. Do wewrite adry referenceto the framework or more of astory-telling doc-
umentation which builds up itsreader’ sknowledge? Sincewe are all devel operswe can read the code (and DocBlocks),
meaning that the first option is redundant. Therefore we decided to go for the second option.

As aresult this documentation does not attempt to be a complete reference, a development gospel, the one and only
source of information on FOF. On the contrary, this documentation aims to be the beginning of your journey, much
like atravel guide. What matters the most is the journey itself, writing your own extensions based on FOF. Asyou go
on writing software you will be full of questions. Most of them you' [l answer yourself. Some of them will be already
answered in the wiki. A few of them you'll have to ask on the mailing list. In the end of the day you will bericher in
knowledge. If you do dig up a golden nugget of knowledge, please do consider writing awiki page. This way we'll
all be richer and enjoy our coding trip even more.

Have fun and code on!

2. Getting started with FOF
2.1. Download and install FOF

You can download FOF as an installable Joomlal library package from our repository [https://
www.akeebabackup.com/download/fof .html]. Y ou can install it like any other extension under Joomlal 2.x and later.

Using the latest development version

Y ou can clone aread-only copy of the Git repository of FOF in your local machine. Make sure you symlink or copy
the fof directory to your dev site's libraries/fof directory. Alternatively, we publish dev releases in the dev release
repository [https://www.akeebabackup.com/download/fof-dev.html]. These are installable packages but please note
that they may be out of date compared to the Git HEAD. Dev releases are not published automatically and may be
several revisions behind the current Git master branch.

2.2. Using it in your extension

The recommended method for including FOF in your component, module or plugin is using this short code snippet
right after your defined(’_JEXEC") or die() statement (Joomlal 2.x and later):

i f (!defined(’ FOF_| NCLUDED))
{

}

Alternatively, you can use the one-liner:

i ncl ude_once JPATH LIBRARIES . '/fOf/include. php';

require_once JPATH LIBRARIES . '/fOf/include. php';

From that point onwards you can use FOF in your extension.

2.3. Installing FOF with your component

Unfortunately, Joomlal doesn't allow us to version checking before installing a library package. This means that it's
your responsibility to check that thereis no newer version of FOF installed in the user's site before attempting to install

https://www.akeebabackup.com/download/fof.html
https://www.akeebabackup.com/download/fof.html
https://www.akeebabackup.com/download/fof.html
https://www.akeebabackup.com/download/fof-dev.html
https://www.akeebabackup.com/download/fof-dev.html
https://www.akeebabackup.com/download/fof-dev.html

Introducing FOF

FOF with your extension. In the following paragraphs we are going to demonstrate one way to do that for Joomlal
2.x [3.x component packages.

Include a directory called fof in your installation package. The directory should contain the files of the installation
package's fof directory. Then, in your script.mycomponent.php file add the following method:

*

/
Check if FOF is already installed and install if not

@aram object $parent class calling this method

@eturn array Array with performed actions sumary
/
private function _install FOF($parent)

{

E I I I

$src = $parent - >get Parent () - >get Pat h(' source');

/1 Load dependenci es
JLoader::inport('jooma.filesystemfile');
JLoader::inmport('jooma.utilities.date");
$source = $src . '/fof';

if (!defined(' JPATH LI BRARI ES'))

{
$target = JPATH ROOT . '/libraries/fOf';
}
el se
{
$target = JPATH LIBRARIES . '/fOf"';
}

$haveTol nstal | FOF = fal se;

if (lis_dir($target))

{
$haveTol nstal | FOF = true;
}
el se
{
$fof Version = array();
if (file_exists($target . '/version.txt'))
{
$rawData = JFile::read($target . '/version.txt');
$info = expl ode("\n", $rawData);
$fof Version['installed] = array(
"version' => trim$info[0]),
' date' => new JDate(trin($info[1]))
)
}
el se

$fof Version['installed] = array(
"version' = '0.0",
' dat e => new JDate(' 2011-01-01")

Introducing FOF

}

$rawData = JFile::read($source . '/version.txt');
$info = expl ode("\n", $rawData);
$f of Ver si on[' package'] = array(
"version' => trim$info[0]),
' dat e’ => new JDate(trin($info[1]))
)

$haveTol nst al | FOF = $f of Versi on[' package'][' date']->toUN X() > $fofVersion['insta
}

$i nstal | edFOF = fal se;

i f ($haveTol nstal | FOF)
{

$versi onSource = ' package';
$installer = new Jinstaller;
$instal |l edFOF = $installer->install ($source);

}

el se

{
}

if (!isset($fofVersion))
{

$versi onSource = 'installed ;

$f of Version = array();

if (file_exists($target . '/version.txt'))
{
$rawData = JFile::read($target . '/version.txt');
$info = expl ode("\n", $rawData);
$fof Version['installed] = array(
"version' => trim$info[0]),
' date' => new JDate(trin($info[1]))

)
}
el se
{
$fof Version['installed] = array(
'version' => '0.0",
' dat €' => new JDate(' 2011-01-01")

}

$rawData = JFile::read($source . '/version.txt');
$info expl ode("\n", $rawbData);
$f of Ver si on[' package'] = array(

"version' => trim$info[0]),

' date' => new JDate(trin($info[1]))

)

$versi onSource = 'installed ;

Introducing FOF

}

if (!($fofVersion[$versionSource]['date'] instanceof JDate))

{
}

$f of Ver si on[$ver si onSource][' date'] = new JDate;

return array(
"required" => $haveTol nstal | FOF,
"installed => $installedFCF,
"version' => $f of Ver si on[$versi onSource] [' version'],
' dat e’ => $f of Versi on[$versi onSource]['date']->format (' Y-md'),
)
}

Y ou need to call it from inside your postflight() method. For example:

~
*

E I I B I B

~

Method to run after an install/update/uninstall method

@aram object S$type type of change (install, update or discover_install)
@aram object $parent class calling this method

@eturn void

function postflight($type, $parent)
{

}

$fofInstallationStatus = $this->_install FOF($parent);

Warning

Dueto abug/featurein Joomlal 1.6 and later, your component's manifest file must start with aletter beforeL,
otherwise Joomla! will assumethat lib_fof.xml isyour extension's XML manifest and install FOF instead of
your extension. We suggest using the com_yourComponentName.xml convention, e.g. com_todo.xml. There
isapatch pending in Joomla!'s tracker for thisissue, hopefully it will be accepted sometime soon.

Tip

Since FOF 2.4.0 you can create an installation script which extends FOFUt i | sl nst al | scri pt, then put
a copy of the latest stable build of FOF inside a top-level directory called f of in your installationpackage
archive. FOFUt i | sl nstal | scri pt will install FOF automatically for you. Check out the installation
script in Akeeba Backup Core for areal-world example

2.4. Sample applications

FOF comes with two sampl e applications which are used to demonstrate its features, To-Do [https.//github.com/akee-
ba'todo-fof-example] and Contact Us [https://github.com/akeebal/contactus]. These were conceived and developed in
different points of FOF's development. As a result they are always in a state of flux and will definitely not expose
all of FOF'sfeatures.

Another good way to learn some FOF tricks is by reading the source code of existing FOF-based components. Just
remember that we are all real world devel opers and sometimes our code is anything but academically correct ;)

https://github.com/akeeba/todo-fof-example
https://github.com/akeeba/todo-fof-example
https://github.com/akeeba/todo-fof-example
https://github.com/akeeba/contactus
https://github.com/akeeba/contactus

Introducing FOF

3. Key Features

Some of the key features / highlights of FOF:

Convention over configuration, Rails style.

Instead of having to painstakingly code every single bit of your component, it's sufficient to use our naming conven-
tions, inspired by Ruby on Rails conventions. For example, if you have com_example, the foobar view will read from
the# example_foobarstable which has aunique key named example foobar_id. The default implementation of con-
trollers, models, tables and views will also cater for the majority of use cases, minimising the code you'll need to write.

HMVC today, without relearning component develop-
ment.

There'salot of talk about the need to re-engineer the MV C classesin Joomla! to support HMV C. What if we could give
you HMV C support using the existing MV C classes, today, without having to relearn how to write components? Y es,
it's possible with FOF. It has been possible since September 2011, actually. And for those who mumble their words
and spread FUD, yes, it ISHMVC by any definition. The very existence of the FOFDispatcher class proves the point.

Easy reuse of view template files without ugly include().

More often than not you want to reuse view template files across views. The "traditional” way was by using include()
or require() statements. This meant, however, that template overrides ceased working. Not any more! Using FOFView's
loadAnyTemplate() you can load any view template file from the front- or back-end of your component or any other
component, automatically respecting template overrides.

Automatic language loading and easy overrides.

Are you sick and tired of having to load your component's language files manually? Do you end up with a lot of
untranslated stringswhen your translators don't catch up with your new features? Y es, that sucks. It's easy to overcome.
FOF will automatically handle language loading for you.

Media files override (works like template overrides).

So far you knew that you can override Joomlal's view template files using template overrides. But what about
CSS or Javascript files? This usualy required the users to "hack core", i.e. modify your views PHP files, end-
ing up in an unmaintainable, non-upgradeable and potentially insecure solution. Not any more! Using FOF's
FOFTemplateUtils::addCSS and FOFTemplateUtils::addJS you can load your CSS and JS files directly from the view
template file. Even better? Y ou can use the equivalent of template overrides to let your users and template designers
override them with their own implementations. They just have to create the directory templates/your_template/me-
dia/lcom_example to override the files normally found in media/com_example. So easy!

Automatic JSON and CSV views with no extra code (also
useful for web services).

Why struggle to provide a remote API for your component? FOF makes the data of each view accessible as JISON
feeds opening anew world of possibilities for Joomlal components (reuse data in mobile apps, Metro-style Windows
8 tiles, browser extensions, mash-up web applications, ...). The automatic CSV views work on the same principle but
output datain CSV format, suitable for painlessly data importing to spreadsheets for further processing. Oh, did we
mention that we already have an almost RESTful web services implementation?

Introducing FOF

No code view templates.

Don't you hate it that you have to write a different view template (in PHP and HTML) for each Joomla!l version and,
worse, each template out there? Don't you hate it having to teach non-devel opers how to not screw up your component
with every update you publish? We feel your pain. That's why FOF supports the use of XML files as view templates,
rendering them automatically to HTML. Not just forms; everything, including browse (multipleitems) and singleitem
views. Even better, you get to choose if you want to use traditional PHP/HTML view templates, XML view templates
or acombination of both, even in the same view!

No code routing, ACL and overall application configura-
tion.

Since FOF 2.1 you can define your application's routing, access control integration and overall configuration without
routing any code, just by using asimple to understand XML file. It's now easier than ever to have Joomlal extensions
with truly minimal (or no) PHP code.

Chapter 2. Component overview and
reference

FOF isan MV C framework in heart and soul. It triesto stick as close as possible to the MV C conventions put forward
by the Joomlal CM S since Joomla! 1.5, cutting down on unnecessary code duplication. The main premiseisthat your
codewill be DRY —not asthe opposite of “wet”, but asin Don't Repeat Y ourself. Simply put: if you ever find yourself
trying to copy code from a base class and paste it into a specialized class, you are doing it wrong.

In order to achieve thiscodeisolation, FOF usesavery flexible structure for your components. A component's structure
looks like this:

Dispatcher

The Dispatcher is the entry point of your component. Some people would call this a "front Controller" and this is
actualy what it is. It's different than what we typically call a Controller in the sense that the Dispatcher is the only
part of your component which is supposed to interface the underlying application (e.g. the Joomlal CMS) and getsto
decide which Controller and task to execute based on the input data (usually thisisthe request data). No matter if you
cal it an entry point, front controller, dispatcher or Clint Eastwood its job is to figure out what needs to run and run
it. We simply chose the name "Dispatcher" because, like al conventions, we had to call it something. So, basically,
the Dispatcher will take a look at the input data, figure out which Controller and task to run, create an instance of it,
push it the data and tell it to run the task. The Controller is expected to return the rendered data or a redirection which
the Dispatcher will dully pass back to its caller.

Oh, wait, what isa Controller anyway? Right below the Dispatcher you will see abunch of stuff grouped asa"triad".
The "triad" is commonly called "view" (with alowercase v). Each triad does something different in your component.
For example, one triad may alow you to handle clients, another triad allow you to handle orders and so on. Y our
component can have one or more triads. A triad usually contains a Controller, aModel and a View, hence the name
("triad" literally means "a bunch of three things"). The only mandatory member is the Controller. A triad may be
reusing the Model and View from another triad — which is another reason why DRY code rocks- or it may even be
view-less, So, atriad may actually be abunch of one, two or threethings, aslong asit includes a Controller. Just to stop
you from being confused or thinking about oriental organised crime and generally make your life easier we decided
to call these "views" (with alowercase v) instead of "triads". See? Now it is so much better.

FOF viewsfollow the"fat Model - thin Controller" paradigm. This meansthat the Controller isageneraly minimalist
piece of code and the Model iswhat getsto do all the work. Knowing this very important bit of information, let's take
alook at the innards of aview.

Component overview and reference

In the very beginning we have the Controller. The Controller has one or more tasks. Each task is an action of your
component, like showing alist of records, showing asingle record, publish arecord, delete arecord and so on. With a
small difference. The Controller's tasks do not perform the actual work. They simply spawn an instance of the Model
and push it the necessary data it needs. This is called "setting the state” of the Moddl. In most cases the Controller
will also call a Model's method which does something. It's extremely important to note that the Controller will work
with any Model that implements that method and that the Model is oblivious to the Controller. Then the Controller
will create an instance of the View class, pass it the instance of the Model and tell it to go render itself. It will take
the output of the View and pass it back to the Dispatcher.

Which brings us to the Model. The Modél is the workhorse of the view. It implements the business logic. All FOF
Models are passive Models which means that they are oblivious to the presence of the Controller and View. Actually,
they are completely oblivious to the fact that they are part of atriad. That's right, Models can be used standalone,
outside the context of the view or component they are designed to live in. The Model's methods will act upon the
state variables which have already been set (typicaly, by the Controller) and will only modify the state variables or
return the output directly. Models must never have to deal with input data directly or talk to specific Controllers and/
or Views. Models are decoupled from everything, that's where their power lies.

Just a small interlude here. Right below the Model we see a small thing called a"Table". Thisis a strange beast. It's
one part data adapter, one part model and one part controller, but nothing quite like any of this. The Table is used
to create an object representing a single record. It is typically used to check the validity of arecord before saving it
to the database and post-process a record when reading it from the database (e.g. unserialise a field which contains
serialised or JSON data).

The final piece of our view is the View class itself. It will ask the Model for the raw data and transform it into a
suitable representation. Typically this means getting the raw records from the Model and create the HTML output,
but that's not the only use for a View. A View could just as well render the data as a JSON stream, a CSV file, or
even produce a graphic, audio or video file. It's what transforms the raw data into something useful, i.e. it's your
presentation layer. Most often it will do so by loading view templates which are .php files which transform raw data
to asuitable representation. If you are using the XML forms feature of FOF, the View will ask the Model to return the
form definition and ask FOF's renderer to render thisto HTML instead. Even though the actual rendering is delegated
to the Renderer (not depicted above), it's still the View that's responsible for the final leg of the rendered data: passing
it back toitscaller. Yes, the View will actually neither output its data directly to the browser, nor talk to the underlying
application. It returns the raw data back to its caller, which is ailmost aways the Controller. Again, we have to stress
that the View is obliviousto both the Controller and the Model being used. A properly written View isfully decoupled
from everything else and will work with any data provider object implementing the same interface as a Model object
and a caller which is supposed to capture its output for further consumption.

I mportant

All classes comprising aview are fully decoupled. None is aware of the internal workings of another object
in the same or a different view. This alows you to exchange objects at will, promoting code reuse. Even
though it sounds like a lot of work it's actually less work and pays dividends the more features you get to
add to your components.

There's another bit mentioned below the triad, the Toolbar. The Toolbar is something which conceptually belongs to
the component and only hasto do with views being rendered as HTML. It'swhat renders the title in the back-end, the
actionstoolbar in the front- or back-end and the navigation links/ menu in the back-end. In case you missed the subtle
reference: FOFToobar allows you to render an actions toolbar even in the front-end of your component, something
that's not possible with plain old Joomla!. Y ou will simply need to add some CSSto do it.

Finally we mention the Helpers. The Helpers are pure static classes implementing every bit of functionality that's
neither OOP, nor can it be categorised in any other object already mentioned. For example, methods to render drop-
down selection lists. In so many words, "Helper" is apolite way of saying "non-OOP cruft we'd rather not talk about".
Keep your Helpersto aminimum as they're aroyal pain in the rear to test.

Component overview and reference

Please do keep in mind that thisis just a generic overview of how an FOF-based component works. The real power
comes from the fact that you don't need to know the internal workings of FOF to use it, you don't need to copy and
paste code from it (woe is the developer who does that) and quite possibly you don't even need to write any code.
At all. It'sall discussed later on.

1. Models

The Model isthe workhorse. Businesslogic goes here. Models never interface input datadirectly or output data. They
are supposed to read data from their state and push the results to their state.

Class and file naming conventions

The convention for naming the model classesisConponent Model Vi ew, e.g. TodoMbdel | t ens for acomponent
named com t odo and aview named i t ens. Thelast part SHOULD be plural. Support for singular named models
(suchas TodoModel | t en) will be dropped in afuture version.

The model file MUST match the last part of the class name. This means that the file for TodoModel |t ens MUST
bei t ens. php, whereasthefile for TodoModel | t emMUST bei t em php.

All Model files are located in your component's nodel s directories, in the front-end and back-end. If afile is not
present in the front-end, it will be attempted to be loaded from the back-end and vice versa. If the Model classis not
loaded and a suitable file cannot be found FOF will fall back to one of the following, in this order:

1. TheDefault model. Thisisaspecia model classfollowing the naming conventionsConponent Model Def aul t,
e.g. TodoMbdel Def aul t, found inthedef aul t . php file inside your models directory.

2. If adefault model is not found, FOF will fall back to creating a suitably configured instance of FOFMbdel , using
convention over configuration (explained below) to determine what the model object should do.

Database table naming conventions

All FOF models connect, by default, to a database table. Y ou can of course have a model whose corresponding table
doesn't exist aslong as you do not use its default data processing methods.

Database tables are named as # _component_view, e.g. # todo_items for a component named com t odo and a
view namedi t ens.

The auto increment field is named component_view _id, e.g. todo_item _id for a component named com t odo and
aview named i t ens. If your table does not have an auto incrementing field you will not be able to use the default
implementation of FOF's data processing methods.

Y ou can override defaults without copying & pasting code, ever. This is documented in Configuring MV C.

Customising a specialised class

Unlike plain old Joomlal you are NOT supposed to copy and paste code when dealing with FOF. Our rule of thumb
isthat if you ever find yourself copying code from FOFModel into your extension's specialised model class you're
doing it wrong.

FOF models can be customised very easily using the onBef or eSonet hi ng / onAf t er Sonet hi ng methods.
The Sonet hi ng isthe name of the model method they are related to. For example, onBef or eSave runsbeforethe
save() method executesits actions and onAf t er Save runsright after the save() method executes its actions.
Specific implementation notes for each case can be found in the docblocks of each event method.

10

Component overview and reference

Customising using plugin events

FOF models are designed to call certain plugin events (of "content" plugins) upon certain actions. The events are
defined in the model's protected properties as follows:

event_before delete(default: onCont ent Bef or eDel et e) istriggered before arecord is deleted.
event_after _delete (default: onCont ent Af t er Del et e) istriggered after arecord is deleted.
event_before_save (default: onCont ent Bef or eSave) istriggered before arecord is saved.
event_after_save (default: onCont ent Af t er Save) istriggered after arecord is saved.

event_change_state (default: onCont ent ChangeSt at e) istriggered after arecord changes state, i.e. it'spublished,
unpublished etc.

event_clean cache (default: none; doesn't run) istriggered when FOF is cleaning the cache.

Moreover, if you are using XML forms you will also see the onCont ent Pr epar eFor mevent which runs when
the form is being pre-processed before rendering.

These are the same as the standard Joomlal plugin events. This ensures that a plugin written for a core Joomlal com-
ponent can easily be extended to handle FOF components as well.

Whenever Joomlal requires us to pass a context to the plugin events we use the conventionsconponent . vi ewe.g.
com t odo. i t ens for acomponent name com t odo and amode for theitemsvi ew.

1.1. Model Behaviours

1.1.1. Introduction

Models can implement complex, reusable functionality using behaviours. Model Behaviors are a handy way to alter
the workflow of a FOFModel. It's based upon the standard Joomla Event system.

Before and After certain actions (onBef or e* / onAf t er *) the model triggers an "event" which is propagated to
each of the registered behaviors for that model. They can then, by registering to these events, alter the way the action
itself is performed.

It's possible to register different behaviors per model; they can be added by default, or even on the fly, after the model
is created.

FOF already provides alist of common behaviors, that can be used by any FOFModel object. The bundled behaviour
classes are currently located inside FOF's nodel / behavi or directory. By default, only thefi | t er s behaviour
is being loaded.

1.1.2. FOF standard Behaviors

FOF comes with severa built-in model behaviours. They are used to provide core functionality. By default only the
"filters" behaviour is attached to amodel for performance reasons. In this section we will discuss what each behaviour
does.

Y ou can combine multiple behaviours at once.
1.1.2.1. access

Adding this behaviour to amodel object filters the front-end output by the viewing access levelsthe user has accessto.

11

Component overview and reference

I mportant

Thisbehaviour REQUIRESthef i | t er s behaviour. If you have not added the "filters" behaviour it will not
have any effect on browse views. It will, however, work on edit and read views.

This behaviour requiresthe access magic field.
1.1.2.2. enabled

Adding this behaviour to a model object filters the front-end output to only items which are published (enabled=1).

I mportant
This behaviour requires the enabl ed magic field.

1.1.2.3. filters

I mportant
This behaviour only works on browse views.

Adding this behaviour to a model object allows FOF to magically apply filters based on the input data. For example,
if you pass &foobar=1 in the URL, or —more generally speaking— have afoobar state variable with avalue of 1 then
the SQL query used to fetch the items list will be filtered by the rows where the foobar column isset to 1.

The filters behaviour is smart enough to recognise the type of your table fields and apply the correct type filter each
time. There are several different filtering methods per field type. Besides the default filtering method which is used
when you only use aplain value in the state variable you can select a different method. To do that you need to pass a
hash (keyed) array in the state variable like this array(‘'method' => 'between’, 'from' => 1, 'to' => 10) or, in URL query
format, & foobar[method]=betweené& foobar[from]=1& foobar[to]=10.

So, let's discuss the available match types per field type.

Number fields

For numeric fields you can use the following filtering methods:

exact Thisisthe default method. Y ou can just pass the value you want to search. If you want to use the hash
array format you have the following keys:

* net hod : exact

« val ue : the value you want to search

partial For numeric fields thisisjust an aliasto exact .
between Returns records whose field value is inside the space between two numbers, inclusive. Y ou have the
following keys:

e net hod : bet ween
e from: Left barrier of the number space
e t 0: Right barrier of the number space

For example from=1 and to=10 will search for any value between 1 to 10, including 1 and 10.

12

Component overview and reference

outside Returns records whose field value is outside the space between two numbers, exclusive. Y ou have the
following keys:

e net hod : out si de
e from: Left barrier of the number space
* t 0 : Right barrier of the number space

For example from=1 and to=10 will search for any value lower than 1 or greater than 10, excluding
1and 10.

interval Returns records whose field value is following an interval (arithmetical progression)
e nethod:interval
e val ue : The starting value of theinterval
e interval :Theinterval period
For example value=5 interval=2 will search for values 5, 7, 9, 11 and so on.
Boolean fields
For boolean (tiny integer) fields you can use the following methods:

exact Thisisthe default method. Y ou can just pass the value you want to search. If you want to use the hash array
format you have the following keys:

* et hod : exact

e val ue : the value you want to search
Text fields
For text fields you can use the following methods:

partial This is the default method. Y ou can just pass the value you want to search. The records returned have
that value somewhere in their fields (partial text search). If you want to use the hash array format you
have the following keys:

e nmet hod:parti al
« val ue : the partial phrase you want to search

exact Performs an exact search. The fields' values must be exactly equal to the value you use here. You have
the following keys:

* met hod : exact

« val ue : the exact phrase you want to search
Date fields
For date and date/time fields you can use the following methods:

exact This is the default method. Performs an exact search. The fields' values must be exactly equal to the
value you use here. Y ou have the following keys:

13

Component overview and reference

partial

between

outside

interval

* net hod : exact
« val ue : the exact phrase you want to search

Y ou can just pass the value you want to search. The records returned have that value somewherein their
fields (partial text search). If you want to use the hash array format you have the following keys:

e nethod:parti al
e val ue : the partial phrase you want to search

Returns records whose field value is inside the space between two dates, inclusive. You have the fol-
lowing keys:

e net hod : bet ween
« from: Left barrier of the date space
e t 0: Right barrier of the date space

Returns records whose field value is outside the space between two dates, exclusive. You have the
following keys:

e nmet hod : out si de
« from: Left barrier of the number space

« t 0: Right barrier of the number space

Warning

This method currently only works with MySQL.
Returns records whose field value is following an interval (arithmetical progression)
e nethod:interval
e val ue : The starting value of theinterval

e i nterval :Theinterva period. Theinterval can either beastring or an array. Asastring it contains
asign (+ to go to the future or - to go to the past), the numeric portion of the interval period and the
actual interval (days, months, years, weeks). For example:

+1 nont h to search for values every one month in the future or - 1 nont h to search for values
every one month in the past

Asan array it can look like thisarray(‘'sign’ =>'+', 'value' =>'1', 'unit' =>'month’)

1.1.2.4. language

Adding this behaviour to a model object filters the front-end output by language, displaying only the items whose
language matches the currently enabled front-end language. Obviously this only has an effect on multi-lingual sites
when the Joomlal language filter plugin is enabled.

I mportant

This behaviour requiresthe| anguage magic field.

14

Component overview and reference

1.1.2.5. private

Adding this behaviour to a model object filters the front-end output by the created by user, showing only items that
have been created by the currently logged in user. Items not created by the current user will not be displayed.

| mportant

This behaviour requiresthecr eat ed_by magic field.

1.1.3. Adding an Existing Behavior to a Model
There are 5 ways to add a behavior to amodel:
1. Using the default_behaviors property of the model. This property is an array of behavior names to load upon the
model construction. By default it contains only the filters behavior. Y ou can override it with your preferred behavior
in your model class declaration:
cl ass Foobar Mbdel Todos ext ends FOFMbdel {
protected $default_behaviors = array('filters', 'access', 'enabled);
}

2. Passing it into the $conf i g parameter for the constructor of your model class:

cl ass Foobar Mbdel Todos ext ends FOFMbdel {
public function __construct($config = array()) {

if (!'isset($config['behaviors'])) {
$config[' behaviors'] = array('filters', 'access', 'enabled);
}

parent::__construct($config);

}

3. Passing it when you create the model instance through the conf i g parameter:

$nodel = FOFModel : : get Tnpl nst ance(' Todos', ' Foobar Model ', array(
"behaviors' => array('filters', 'access', 'enabled'))

)

4. Adding it dynamically using the method addBehavi or

cl ass Foobar Mbdel Todos ext ends FOFMbdel {

public function __construct($config = array()) {
parent::__construct($config);

if (% Want ToAddIt) {
$t hi s- >addBehavi or (' enabl ed') ;
}

15

Component overview and reference

}

5. Adding it on theview insidef of . xmni

<?xm version="1.0" encodi ng="utf-8"?>
<f of >
<front end>
<vi ew name="t odos" >
<confi g>
<option nanme="behavi ors">filter, access, enabl ed</ opti on>
</ config>
</ vi ew>
</ frontend>
</ fof >

1.1.4. Creating a new Behavior

Y ou can create custom behaviors for your component. It's very important how you name it, because FOF will search
for your behaviors based on their name.

If you want to add abar behavior in af oo component, FOF will search for it in the following order:

1. First look for Conponent naneMbdel Vi ewnaneBehavi or Nane (ie Foobar Model TodosBar)
Caution, the Vi ewnane part MUST be plural.

2. Thenlook for Conponent nanmeModel Behavi or Nane (ie: Foobar Model Bar)

3. Thenlook for FOFMbdel Behavi or Behavi or Name (ie: FOFModel Behavi or Bar)

This allows you to create model specific behaviors and also component-wide ones.

It'salso possible to override already existing behaviors, by naming them correctly (ie: you can overridetheenabl ed
behavior by creating anew class caled Foobar Model Behavi or Enabl ed).

I mportant

The behaviors are not automatically loaded, so you need to provide your own autoloader or ssmply load the
classesin the constructor of your Model before calling parent:: __construct(..) .

1.1.5. Available Events for Model Behaviors

In each model behavior you can inject into the workflow using these methods:

/**

* This event runs before saving data in the nodel
*

@aram FOFModel &$nmpdel The nodel which calls this event
@aram array &bdata The data to save

@eturn void
/
public function onBef oreSave(&$nodel, &$dat a)

{

*
*
*
*
*

16

Component overview and reference

}
/**
* This event runs before deleting a record in a nodel
*
* @aram FOFModel &$nmodel The nmodel which calls this event
*
* @eturn void
*

/
public function onBeforeDel et e(&nodel)

{
}
/**
* This event runs before copying a record in a nodel
*
* @aram FOFMobdel &$nmodel The nodel which calls this event
*
* @eturn void
*

/
public function onBeforeCopy(&$nodel)

{
}
/**
* This event runs before publishing a record in a nodel
*
* @aram FOFModel &$nodel The nodel which calls this event
*
* @eturn void
*

/
public function onBeforePublish(&$nodel)

{
}
/**
* This event runs before registering a hit on a record in a nodel
*
* @aram FOFModel &$nmodel The nodel which calls this event
*
* @eturn void
*

/
public function onBeforeHt (&bnodel)

{
}
/**
* This event runs before noving a record in a nodel
*
* @aram FOFModel &$nodel The nodel which calls this event
*
* @eturn void
*

/
public function onBeforeMve(&$nodel)

17

Component overview and reference

{

}

/**
* This event runs before changing the records' order in a nodel
*
* @aram FOFModel &$nmodel The nmodel which calls this event
*
* @eturn void
*

/
public function onBeforeReorder(&$nodel)

{
}
/**
* This event runs when we are building the query used to fetch a record
* [ist in a nodel
*
* @aram FOFMbdel &prmodel The npdel which calls this event
* @aram JDatabaseQuery &$query The query being built
*
* @eturn void
*

~

public function onBeforeBuil dQuery(&$nodel, &S$query)

{
}
/**
* This event runs after saving a record in a nodel
*
* @aram FOFMobdel &$nodel The nodel which calls this event
*
* @eturn void
*

/
public function onAfterSave(&$snodel)

{
}
/**
* This event runs after deleting a record in a nodel
*
* @aram FOFModel &$nmodel The nodel which calls this event
*
* @eturn void
*

/
public function onAfterDel ete(&nodel)

{
}

/

*

This event runs after copying a record in a nodel

@aram FOFModel &$nmodel The nodel which calls this event

EE B

18

Component overview and reference

* @eturn void

*/

public function onAfter Copy(&$nodel)

{

}

/**

* This event runs after publishing a record in a nodel
*

* @aram FOFModel &$nmodel The nodel which calls this event
*

* @eturn void

*

/
public function onAfterPublish(&$nodel)

{

}

/**
* This event runs after registering a hit on a record in a nodel
*
* @aram FOFMobdel &$nodel The nodel which calls this event
*
* @eturn void
*

/
public function onAfterHit(&bnodel)

{
}
/**
* This event runs after noving a record in a nodel
*
* @aram FOFMobdel &$nodel The nodel which calls this event
*
* @eturn void
*

/
public function onAfterMve(&$nodel)

{
}
/**
* This event runs after reordering records in a nodel
*
* @aram FOFModel &$nodel The nodel which calls this event
*
* @eturn void
*

/

public function onAfterReorder(&$nodel)
{

}

/**
* This event runs after we have built the query used to fetch a record

* list in a nodel
*

19

Component overview and reference

* @aram FOFMbdel &prmodel The nodel which calls this event
* @aram JDat abaseQuery &$query The nodel which calls this event
*

* @eturn void

*/

public function onAfterBuil dQuery(&$nodel, &S$query)

{

}

/**

* This event runs after getting a single item

*

@aram FOFModel &$nodel The nodel which calls this event
@aram FOFTable &S$record The record |oaded by this nodel

@eturn void
/
public function onAfterGCetltem &nodel, &3$record)
{
}

1.1.6. New Behavior Example: Published

*
*
*
*
*

Let's create a behavior for our component called Published, that will filter the items based on the publish_up and
pulish_down fields of atable.

cl ass FOFModel Behavi or Publ i shed extends FOFModel Behavi or
{

/**

* Let's add the filter for the publish_up and publish_down fields here, after the que
*
* @aram FOFMbdel &prmodel The nodel which calls this event
* @aram JDat abaseQuery &$query The nodel which calls this event
*
* @eturn void
*/
public function onAfterBuil dQuery(&$nodel, &$query)
{

/1 This behavior only applies to the front-end.

if (!FOFPl atform:getlnstance()->i sFrontend())

{
}

/1l Get the nane of the publish up field (support for aliases)
$t abl e = $nodel - >get Tabl e();
$publ i shUpFi el d = $t abl e- >get Col umAl i as(' publish_up');

return;

/1l Get the nane of the publish_down field (support for aliases)
$publ i shDownFi el d = $t abl e- >get Col utmAl i as(' publ i sh_down');

/1 Make sure the fields actually exist
$publ i shUpExi sts = in_array($publishUpFi el d, $table->getKnownFields());

20

Component overview and reference

$publ i shDownExi sts = in_array($publi shDownFi el d, $t abl e->get KnownFi el ds());

/1

If they both do no exist, exit, we cannot apply the behavior

i f (!$publishUpExists && !$publi shDownExi st s)

{
}

return;

/] Get the current date
$now = new JDat e()

$now

$db

$now >t 0Sql () ;

= JFactory: : get Dbo();

/1 Filter by publish up first
i f ($publishUpExists) {

}

$query- >wher e($db- >gn($publ i shUpField) . ' <= "' . $db->qg($now));

/1 Filter by publish down
i f ($publishDownExists) {

}
}

/**

$quer y- >wher e($db- >gn($publ i shDownFi el d) . ' >

$db- >q($now)) ;

* Voids the getltemresult if the |oaded itemwasn't published

*

* @aram FOFModel &$nodel The nodel which was call ed
* @aram FOFTable &$record The record |oaded fromthe databae

*

* @eturn void

*/

public function onAfterCetltem &nodel, &3$record)

{

if ($record instanceof FOFTabl e)

{

/1 This behavior only applies to the front-end.
if (!FOFPl atform:getlnstance()->i sFrontend())

{
}

return;
/1l Get the nane of the publish up field (support for aliases)
$publ i shUpFi el d = $record- >get Col umAl i as(' publish_up');

/1l Get the nane of the publish_down field (support for aliases)
$publ i shDownFi el d = $record->get Col umAl i as(' publ i sh_down');

/1 Make sure the fields actually exist
$publ i shUpExi sts = in_array($publishUpField, $record->getKnownFields());

$publ i shDownExi sts = in_array($publ i shDownFi el d, $record->get KnownFi el ds());

21

Component overview and reference

/1 1f they both do no exist, exit, we cannot apply the behavi or
i f (!$publishUpExists && !$publi shDownExi st s)
{

}

/Il Get the current date
$now = new JDat e()
$now = $now >t 0Sql () ;

return;

i f ($publishUpExists) {
$publ i sh_up = new JDat e($r ecor d- >$publ i shUpFi el d);
if ($publish_up > $now) {
$record = null;
return;

}

i f ($publishDownExists) {
$publ i sh_down = new JDat e($r ecor d- >$publ i shDownFi el d) ;
if ($publish_down < $now) {
$record = null;
return;

}
2. Tables

Tablesare strange beasts. They are part dataadapter, part model and part controller. Confused? They are used to create
an object representing a single record of a database table. They're typically used to check the validity of a record
before saving it to the database and post-process a record when reading it from the database (e.g. unserialise afield
which contains serialised or JSON data). They can come in very handy to perform automated ("magic") actions when
creating / modifying / loading a database record.

Class and file naming conventions

The conventions for naming the table classesis Conponent Tabl eVi ew, e.g. TodoTabl el t emfor acomponent
named com t odo and aview named i t ens. Thelast part MUST be singular. It'slogical: atable class operates on
asinglerecord, ergo it's singular.

The table file MUST match the last part of the class name. This means that the file for TodoTabl el t emMUST
bei t em php.

All Tablefiles are located in your component'st abl es directoriesin the back-end. If the Table class is not loaded

and a suitable file cannot be found FOF will fall back to creating a suitable configure instance of FOFTable, using
convention over configuration (explained below) to determine what the table object should do.

Database table naming conventions

It's exactly as described in the Model reference.

22

Component overview and reference

Magic fields

Magic fields have special meaning for FOF. They are:

title

dug

enabled

ordering
created by
created on
modified_by
modified_on
locked by
locked on
hits
language

asset_id

access

Thetitle of an item. It's used for creating a slug.

That'sthealiasof anitem, typically used as part of generated URL sby your components. By defaullt,
it will be generated out of thetitle using a very basic trangliteration algorithm.

Is this record published or not? It's like the published column in core Joomlal components, but
usualy it isonly supposed to take values of O (disabled) and 1 (enabled).

The sort order of the record.

The ID of the user who created the record. Handled automatically by FOF.

The date when the record was created. Handled automatically by FOF.

The ID of the user who last modified the record. Handled automatically by FOF.

The date when the record was last modified. Handled automatically by FOF.

The D of the user who locked (checked out) the record for editing. Handled automatically by FOF.
The date when the record was locked (checked out) for editing. Handled automatically by FOF.
How many read hits this record has received. Handled automatically by FOF.

The language of the record if you want a multi-lingual site.

TheID inthe# _assets table for the record. Handled automatically by FOF. Only required if you
want per item ACL privileges.

Viewing access level

Y ou can always customise the magic fields' namesin your Table class using the setColumnAlias method. For example,
if your column is named published instead of enabled:

function __construct($table, $key, $db, $config)

{

$t hi s- >set Col umAl i as(' enabl ed', ' published');

parent::__construct ($table, $key, $db, $config);

}

Now FOF will know that the published column contains the publish status of the record. This comes in handy when
you're upgrading a component from POJ (plain old Joomla!) to FOF.

I mportant

We strongly suggest to set these alias inside the table constructor and more specifically before calling the
parent constructor. In this way, FOF will know everything about your table and can set some automatic
feature, like asset tracking.

Using joined tables

Quite often you can have tables that are linked together, while you can setup joins in the list view acting on the
bui | dQuery, sometimes you need these joined fields while using the table.

23

Component overview and reference

To do that you can simply create the join query, pass it to the FOFTabl e in the construction and you're done! FOF
will do therest.

Let'sseeit in action with areal an example. Let's you have the table foo linked to the table bar:

Table2.1. Tablefoo

foo_id title
1 First row
2 Second row

Table2.2. Table bar

bar_id title barfield foo_id
Bar tabletitle 1 Unique column namefield 1|1
Bar tabletitle 2 Unique column namefield 2|2

In plain sgl you should do something like this:

SELECT jos_foo.*, jos_bar.title as bar_title, barfield
FROM j os_f oo

INNER JO N jos_bar ON jos_bar.foo_id = jos_foo.foo_id
WHERE jos _foo.foo_ id =1

When setting up the table, FOF aready does a query likethis:
SELECT jos_foo.*

FROM j os_f oo

WHERE jos foo.foo id =1

So we just have to "inject” the join part. We can do that extending the FOFTabl e, creating a query using Joomlal
object and then assigning it to the table:

<?php
cl ass Foobar Tabl eFoo ext ends FOFTabl e
{
public function _ construct ($table, $key, &$db)
{
$query = $db- >get Query(true)
->sel ect (array($db->gn('#_bar').'.'.$%db->qgn('title').' as '.$db->qn(’
->select (' barfield)
->innerJoin('#_ bar ON# bar.foo_id =# foo.foo_id);
$t hi s- >set Quer yJoi n($query);
parent::__construct ($table, $key, $db);
}

}

Asyou can see, it's quite easy to setup: you just have to create a query with no from clause (FOF will use the current
table one) and you are free to compose as you want. You can quote columns names, table names, using column or
table alias (and quote them or not) and so on: it's just aregular query. FOF will now automatically know of all fields
in your joined table query.

24

Component overview and reference

Customising a specialised class

Unlike plain old Joomla! you are NOT supposed to copy and paste code when dealing with FOF. Our rule of thumb
isthat if you ever find yourself copying code from FOFTabl e into your extension's specialised table class you're
doing it wrong.

FOF tables can be customised very easily using the onBef or eSonet hi ng / onAf t er Sonet hi ng methods. The
Sonet hi ng is the name of the table method they are related to. For example, onBef or eBi nd runs before the
bi nd() method executes its actions and onAf t er Bi nd runsright after the bi nd() method executes its actions.
Specific implementation notes for each case can be found in the docblocks of each event method.

Customising using plugins

Y ou can customise the actions of tables by using standard "syst ent' plugins. FOFTabl e will automatically create
plugin events using afixed naming prefix and appending them with thelast part of the table'sname. For example, if you
have atable called TodoTabl el t emFOF will attempt to run a system plugin event called onBef or eBi ndl t em
For the sake of documentation we will be using the suffix TABLENANME.

The obvious drawback is the possibility of naming clashes. For example, given two tables TodoTabl el t emand
Cont act usTabl el t emthe event to be called before binding datato either tableis called onBef or eBi ndl t em
How can you distinguish between the two cases? The first parameter passed to the plugin event handler is areference
to the table object itself, by convention called $t abl e. You can do a$t abl e- >get Tabl eNane() which returns
something like#__t odo_i t ens. Just check if it's the database table you expect to be interacting with. If not, just
return true to let FOF do its thing uninterrupted.

The complete list of eventsis:

onBefore- istriggered before binding data from an array/object to the table object.
BindTABLE-
NANVE

onAfterL oad- istriggered after arecord isloaded
TABLENANMVE

onBefore- istriggered before arecord is saved to the table
StoreTABLE-
NANVE

onAfter- istriggered after arecord has been saved to the table
StoreTABLE-
NANME

onBefore- istriggered before asingle record is moved (reordered)
MoveTABLE-
NANE

onAfter- istriggered after a single record is moved (reordered)
MoveTABLE-
NANE

onBeforeRe- istriggered before anew ordering is applied to multiple records of the table
orderTABLE-
NANMVE

25

Component overview and reference

onAfterRe- istriggered before anew ordering is applied to multiple records of the table
orderTABLE-
NANMVE

onBefore- istriggered before arecord is deleted
DeleteTABLE-
NANMVE

onAfter- istriggered after arecord has been deleted
DeleteTABLE-
NANMVE

onBeforeHit- istriggered before registering aread hit on arecord
TABLENANMVE

onAfterHit- istriggered after registering aread hit on arecord
TABLENAME

onBeforeCopy- istriggered before copying (duplicating) arecord
TABLENAME

onAfterCopy- istriggered after copying (duplicating) arecord
TABLENANE

onBeforePub- istriggered before publishing arecord
lishTABLENAME

onAfterReset- istriggered after we have reset the table object's state
TABLENANMVE

onBeforeReset- istriggered before resetting the table object's state
TABLENAME

If you return boolean false from an onBef or e event the operation is cancelled.

As you can easily understand this is an extremely powerful feature as it allows end users and site integrators (of a
power user level, granted) to modify or extend the behaviour of FOF-powered extensions with great ease.

2.1. Table Behaviors

2.1.1. Introduction

Tables can implement complex, reusable functionality using behaviours. Table Behaviors are an handy way to alter
the workflow of a FOFTable. It's based upon the standard Joomla Event system.

Before and After certain actions (onBef or e* / onAf t er *) the table triggers an "event" which is propagated to
each of the registered behaviors for that table. They can then, by registering to these events, alter the way the action
itself is performed.

It's possible to register different behaviors per table; they can be added by default, or even on the fly, after the table
is created.

FOF dready provides a list of common behaviors, that can be used by any FOFTable object. The bundled behaviour
classes are currently located inside FOF'st abl e/ behavi or directory. By default, only the asset s and t ags
behaviour are being loaded

26

Component overview and reference

2.1.2. FOF Standard Behaviors

assets This behavior (added by default by FOF) manages the assets for a resource if the asset_id field

(or andiasfor it) is set for the table

contenthistory This behavior manages the content history related to the current resource

I mportant

This behavior requires a parameter save_hi st ory on your component parameters
config.xm.

tags Thisbehavior (added by default by FOF) dealswith tags related to the current resource. It will be

applied only if the hasTags property is set to true.

2.1.3. Add an existing Behavior to a Table

There are 5 ways to add a behavior to atable:

Using the default_behaviors property of the table. This property is an array of behavior names to load upon the
table construction. By default it contains the tags and the assets behaviors. Y ou can override it with your preferred
behavior in your table class declaration:

cl ass Foobar Tabl eTodo extends FOFtabl e {
protected $default_behaviors = array('tags');
}
Passing it into the $conf i g parameter for the constructor of your table class:

cl ass Foobar Tabl eTodo extends FOFtabl e {
public function __construct($config = array()) {
if (!isset($config['behaviors'])) {
$config[' behaviors'] = array('tags');

}

parent:: construct($config);

}

Passing it when you create the table instance through the conf i g parameter:

$nodel = FOFTabl e: : get Tnpl nst ance(' Todo', ' FoobarTable', array(' behaviors' => array('tagt

Adding it dynamically using the method addBehavi or :

cl ass Foobar Tabl eTodo extends FOFtabl e {

public function _ construct($config = array()) {
parent::__construct ($config);

if ($iwant ToAddlt) {

27

Component overview and reference

$t hi s- >addBehavi or (' tags');

}

» Addingit ontheview insidef of . xm :

<?xm version="1.0" encodi ng="utf-8""?>

<f of >
<conmon>
<t abl e nanme="t odo" >
<behavi or s>t ags</ behavi or s>
</t abl e>
</ conmon>
</fof>

2.1.4. Creating a new Behavior

Y ou can create custom behaviors for your component. It's very important how you name it, because FOF will search
for your behaviors based on their name.

If you want to add abar behavior, FOF will search for it in the following order:

* Firstlook for Comrponent naneTabl eVi ewnaneBehavi or Nane (ie: Foobar Tabl eTodosBar)
Caution, the Vi ewnamne part MUST be singular.

e Thenlook for Conponent naneTabl eBehavi or Nane (ie Foobar Tabl eBar)

» Thenlook for FOFTabl eBehavi or Behavi or Nane (ie: FOFTabl eBehavi or Bar)

This allows you to create table specific behaviors and also component-wide ones.

It's also possible to override already existing behaviors, by naming them correctly (ie: you can override the t ags
behavior by creating anew class called Foobar Tabl eBehavi or Tags).

I mportant

The behaviors are not automatically loaded, so you need to provide your own autoloader or smply load the
classes in the constructor of your Table before callingparent :: __construct(..) .

2.1.5. Available Events for Table Behaviors

In each table behavior you can inject into the workflow using these methods:
/ * %

* This event runs before binding data to the table

*

* @aram FOFTable &$table The table which calls this event

* @aram array &bdata The data to bind
*
* @eturn boolean True on success
*
/
public function onBeforeBi nd(&t abl e, &$data)
{

28

Component overview and reference

return true;

}
/**
* The event which runs after binding data to the table
*
* @aram FOFTable &$table The table which calls this event
* @aram object|array &$src The data to bind
*
* @eturn boolean True on success
*

~

public function onAfterBind(&$table, &$src)

{
return true;
}
/**
* The event which runs after |loading a record fromthe database
*
* @aram FOFTable &$table The table which calls this event
* @aram boolean &$result Did the |oad succeeded?
*
* @eturn void
*

~

public function onAfterLoad(&$table, &Presult)

{
}
/**
* The event which runs before storing (saving) data to the database
*
* @aram FOFTable &$table The table which calls this event
* @aram bool ean $updateNulls Should nulls be saved as nulls (true) or just skipped o
*
* @eturn boolean True to allow saving
*

~

public function onBeforeStore(&$table, $updateNulls)

{
return true;
}
/**
* The event which runs after storing (saving) data to the database
*
* @aram FOFTable &$table The table which calls this event
*
* @eturn boolean True to allow saving without an error
*

/
public function onAfterStore(&$table)

{
}

return true;

29

Component overview and reference

~
*

E I B T T

~

The event which runs before nmoving a record

@aram FOFTable &S$table The table which calls this event
@aram bool ean $updateNulls Should nulls be saved as nulls (true) or just skipped o

@eturn boolean True to allow noving

public function onBeforeMve(&$tabl e, $updateNul | s)

{
return true;
}
/**
* The event which runs after noving a record
*
* @aram FOFTable &$table The table which calls this event
*
* @eturn boolean True to allow nmoving without an error
*

/
public function onAfterMve(&$t abl e)

{
return true;
}
/**
* The event which runs before reordering a table
*
* @aram FOFTable &$table The table which calls this event
* @aram string $where The WHERE clause of the SQL query to run on reordering (record
*
* @eturn boolean True to allow reordering
*/
public function onBeforeReorder(&$table, $where ='")
{
return true;
}
/**
* The event which runs after reordering a table
*
* @aram FOFTable &$table The table which calls this event
*
* @eturn boolean True to allow the reordering to conplete w thout an error
*

/
public function onAfterReorder(&$table)

{
}

/**

* The event which runs before deleting a record
*

* @aram FOFTable &$table The table which calls this event

return true;

30

Component overview and reference

* @aram integer $oid The PK value of the record to delete
*

* @eturn boolean True to allow the deletion

*/
public function onBeforeDel et e(&$t abl e, $oid)
{
return true;
}
/**
* The event which runs after deleting a record
*
* @aram FOFTable &table The table which calls this event
* @aram integer $oid The PK value of the record which was del eted
*
* @eturn boolean True to allow the deletion without errors
*

~

public function onAfterDel ete(&$table, $oid)

{
return true;
}
/**
* The event which runs before hitting a record
*
* @aram FOFTabl e &table The table which calls this event
* @aram integer $oid The PK value of the record to hit
* @aram boolean $log Should we log the hit?
*
* @eturn boolean True to allow the hit
*

~

public function onBeforeHit(&$table, $oid, $Iog)

{
return true;
}
/**
* The event which runs after hitting a record
*
* @aram FOFTabl e &table The table which calls this event
* @aram integer $oid The PK value of the record which was hit
*
* @eturn boolean True to allow the hitting without errors
*

~

public function onAfterHit(&$table, $oid)

{
return true;
}
/**
* The even which runs before copying a record
*
* @aram FOFTable &$table The table which calls this event
*

@aram integer $oid The PK value of the record being copied

31

Component overview and reference

*

* @eturn boolean True to allow the copy to take place

*/
public function onBeforeCopy(&$table, $oid)
{
return true;
}
/**
* The even which runs after copying a record
*
* @aram FOFTable &$table The table which calls this event
* @aram integer $oid The PK value of the record which was copied (not the new one)
*
* @eturn boolean True to allow the copy w thout errors
*

~

public function onAfterCopy(&$table, $oid)

{
return true;
}
/**
* The event which runs before a record is (un)published
*
* @aram FOFTabl e &table The table which calls this event
* @aram integer|array &$cid The PK I Ds of the records being (un)published
* @aram integer $publish 1 to publish, 0 to unpublish
*
* @eturn boolean True to allow the (un)publish to proceed
*

~

public function onBeforePublish(&$table, &$cid, $publish)

{
return true;
}
/**
* The event which runs after the object is reset to its default val ues.
*
* @aram FOFTabl e &table The table which calls this event
*
* @eturn boolean True to allow the reset to conplete w thout errors
*

/
public function onAfterReset (&$tabl e)

{
return true;
}
/**
* The even which runs before the object is reset to its default val ues.
*
* @aram FOFTabl e &table The table which calls this event
*
* @eturn boolean True to allow the reset to conplete
*

/

32

Component overview and reference

public function onBeforeReset (&$t abl e)

{
}

return true;

2.2. Simple object relation mapping

Note

Available since FOF 2.2.0

A (very) naive introduction to ORM — and why this FOF feature is
not a proper ORM implementation

The most common use case for databases is storing data which is related to one another. This the cornerstone of
relational database management systems (RDBMS) such as MySQL, PostgreSQL, Microsoft SQL Server and so on.
Due to limitations of the shared hosting model we tend not to make full use of the relational features of modern
databases, yet our field naming conventions do denote this aspect of our data. Think about a# _foobar_comments
table having a key named foobar_article id. Y ou immediately understand that each comment record in that table is
related to an articlein atable called # _foobar_articles. That's why you end up writing code to fetch the comments of
an article using FOFModel or the article acomment belongs to using FOFTable.

By doing that, you are implicitly mapping the raw data in the database to one or more PHP objects. This is a very
primitive data mapping operation, as you are mapping scalar values (the raw data) into other scalar values (the PHP
object's properties) through explicit mapping. When you want to map non-scalar values (like the comments of an
article) you get to do that manually, essentially hardcoding this relation into your PHP code. An object-relational
mapping (ORM, for short) does this automatically. It will map your scalar data, what is stored in your database tables,
into objects which you can manipulate directly without worrying too much about how this datais actually stored.

On theflip side, by using afull blown ORM you are abstracting too much. The ORM has to map objects to database
tables and the result is often unoptimised database tables. By going to the other extreme, manually handling all map-
ping, you are writing more code than you should and you make your architecture inflexible.

FOF follows amiddle path. Y ou can tell it how your database tables relate to each other and it will provide you with
an interface to get related objects directly from a FOFTable object. It currently supports al three normalised relations:

* 1:n (one to many). One record of table A is related to zero or more records in table B. The easiest way to picture
thisistable A being articles and table B being comments. This relation can be expressed in different directions:

« Parent. Given arecord in table B you get the record in table A it belongs to.
« Children. Given arecord in table A you get the records in table B that belong to it.

» Siblings. Given arecord intable B you get al the recordsin table B that belong to the same record of table A that
our current record in table B belongs to (it's the children of the parent — that's why they're called siblings)

» 1:1 (one to one). One record of table A is related to exactly zero or one records in table B. It's used mostly to
extend a table without changing its schema, e.g. add more fieldsto the# _userstable. Thisrelation has no implicit
directionality, but since it's the degenerate case of the 1:n relation for n=1 we consider that table A is the parent
of table B, so thisisimplemented by defining a child relation on table A (or a parent or child relation on table B;
it'sup to you!).

* n:n (many to many). One or more records of table A are related to zero or more records in table B. The easiest
way to picture thisistable A being users and table B being user groups. One user can belong to multiple groups.

33

Component overview and reference

Many users can belong to the same group. The characteristic of thisrelation is that you need a pivot (a.k.a. "glue"
or "map") table which tells us which record of table A relates to which record of table B. Quite obviously thereis
no directionality in thisrelation: given arecord in table A you can get all related recordsin table B. Likewise, given
atablein record B you can get all related records in table A through the same relation.

What does it mean to you?
Before this feature you would have to write this kind of code:

$article = FOFTabl e: : get Tnpl nstance(' Article', 'FoobarTable');
$article->l oad(1);

$nodel = FOFModel : : get Tnpl nst ance(' Corments', ' Foobar Model ') ;
$coments = $nodel - >f oobar_article_id($article->foobar_article_id)->getList();
foreach ($coments as $comment Dat a)

{
$comment Tabl e = $nodel - >get Tabl e() ;
$commrent Tabl e- >bi nd($commrent Dat a) ;
/1 Work with $comrent Tabl e

}

Y ou can now write

$article = FOFTabl e: : get Tnpl nstance(' Article', 'FoobarTable');
$article->load(1);

foreach ($article->getRel ations()->getChildren('conments') as $comment Tabl e)

{
}

All you need to do is define the relation, either in the constructor of your table classor inf of . xm .

/1 Work with $comment Tabl e

Even better, relations returning many items use FOFDatabasel terator which means that only one record is loaded
in memory at a time. When sifting through copious amounts of records this decreases your memory consumption
considerably.

The code savings are even more substantial for many-to-many relations, but we'll leave that as an exercise to the reader
to find out why.

How do | use it?

Each table provides the getRelations() method which returns a FOFTableRelations object. By default it's popul ated
with parent relations based on field names which follow the FOF naming conventions. At any time you can use the
add* Relation() methods of FOFTableRelations to add any kind of relations. The docblocks in the methods explain to
you exactly what each parameter does and through which method the related tables are made available. We suggest
adding relationsin the constructor (__construct() method) of your specialised table class. Alternatively, you can define
therelationsin f of . xm .

From that point you can use the relations anywhere you have an instance of that FOFTable object. The best methods
for getting a FOFTable object are:

» Using FOFModel's getlterator. Thisisthe preferred method. Even if you only need the first item fetched by the
model it isfar better for performance and memory consumption to use:

// GOCOD - Use this!

Component overview and reference

$iterator
$nmyRecord

$nodel - >getlterator();
$iterator->current();

than using the next method presented below.

» Using FOFModel's getFirstitem. Thismethod is hot recommended for performance/ resource usage reasons. Keepin
mind that FOFModel will load the ENTIRE record list, based on its state, in memory and return the first item fetched
asaFOFTable. Thiscan lead to bad performance and excessive memory consumption unlessyou are absol utely sure
that FOFModel will only fetch one (or, at most, a handful) of items from the database. Example:

$myRecord = $nodel ->getFirstlitem);

» Using FOFTable::getAninstance(). This method is not recommended due to the singleton caveat. Remember that
the returned object is asingleton. If you need to load a new record you are required to clone that object, e.g. $table
= clone FOFT able::getAninstance('ltems), 'FoobarTabl€);

/1 1f you forget the clone you will spend some not-so-fun hours debugging erratic behavi
$nyRecord = clone FOFTabl e:: get Anl nstance('Itens', 'FoobarTable');
$nyRecor d- >l oad(123);

 Using the getTable() method of a FOFModel object. This method is not recommended due to the singleton caveat.
Likewise to FOFTable::getAninstance() you get a singleton object for that model. Unless you want to operate on
the last item fetched / saved in the model you need to cloneit.

/1 1f you forget the clone you will spend sonme not-so-fun hours debugging erratic behavi
/1 Also, are you sure that your code actually | oaded anything in the table? Hm..
$myRecord = cl one $nodel - >get Tabl e() ;

3. Controllers

The Controller is the orchestrator of each view. You can call a specific task of the Controller —based on the input
variables you pass to it— causing it to execute a specific method. The Controller's job is to create a Model and View
object, set the state of the Model based on the request and then either call a Model's method to perform an action (e.g.
save arecord) or pass the View the Model object and tell it to render itself.

Class and file naming conventions

The convention for naming the controller classesisConponent Cont r ol | er Vi ew,e.g. TodoControl l erltem
for acomponent named com t odo and aview namedi t ens. Thelast part SHOULD be singular. Support for plural
named controllers (such as TodoCont r ol | er | t ens) will be dropped in afuture version.

The controller file name MUST match the last part of the class name. This means that the file for TodoCont r ol -
| erltemMUST bei t em php, whereasthefilefor TodoControl | erlt enms MUST bei t ens. php.

All Controller files are located in your component's controllers directories, in the front-end and back-end. If afileis
not present in the front-end, it will be attempted to be loaded from the back-end and vice versa. If the Controller class
is not loaded and a suitable file cannot be found FOF will fall back to one of the following, in this order:

1. The Default controller. This is a special controller class following the naming conventions Conrponent Con-
troll erDefaul t, eg. TodoControl |l erDefault, found in the def aul t. php file inside your con-
trol | ers directory.

2. If a default controller is not found, FOF will fal back to creating a suitably configured instance of
FOFCont r ol | er, using convention over configuration to determine what the controller object should do.

35

Component overview and reference

View names and handling by a single controller

The convention in FOF is that he view name is plural when you are executing the br owse method (which returns
multiple records) and singular in al other cases. Both views are considered to be part of the sametriad and are handled
by the same controller. For example, let's consider a component named com t odo and aview caledi t ens. The
view name will bei t emms when you are producing a list of al items (br owse task), but i t emin all other cases.
Both views will be handled by the TodoCont r ol | er | t emclass. Thisis different than plain old Joomla!. Y ou do
not need a different "list" and "form" controller. There's one and only one controller per view.

Customising a specialised class

Unlike plain old Joomlal you are NOT supposed to copy and paste code when dealing with FOF. Our rule of thumb
isthat if you ever find yourself copying code from FOFController into your extension's specialised table class you're
doing it wrong.

FOF controller can be customised very easily using the onBef or eSonet hi ng / onAf t er Sonet hi ng methods.
The Sonet hi ng isthe name of the controller task they are related to. For example, onBef or eBr owse runs before
the br owse task executes and onAf t er Br owse runs right after the br owse task executes. Returning false will
result in a 403 Forbidden error. Specific implementation notes for each case can be found in the docblocks of each
event method.

Extending your controllers with plugin events

As adeveloper you've probably found yourself in a position like this: a component you found does almost what you
want. In order to make it do exactly what you want you need to change how a controller handles a specific task in
a specific view. But if you modify the controller ("hack core") you have upgrade and maintenance issues. Y ou can
make a feature request to the developer but you don't know if and when the feature will be implemented. If you are
the developer of the component you are faced with the dilemma: do | let this client down or do | implement a feature
that doesn't quite fit my extension and will become a maintenance burden?

This is where FOF kicks in. Remember how you can customise a speciaised class with onBef or e / onAft er
methods? Since FOF 2.1.0 you can handle these methods not only with a customised class but also with system plugin
events. System plugins are always loaded early in the Joomla load process (as early as the onAfterInitialise call),
making them an excellent choice for providing component customisation code, without the need to over-engineer
FOF's handling of Controllers.

Y ou will need to create a method named onBef or eConponent Cont r ol | er Vi ewTask, e.g. onBef or eFoo-
bar Control | erlt ensRead to handle the onBef or e event of com f oobar, i t ens view, r ead task. Re-
turning f al se will prevent the task from firing. Y ou can do the same for the onAf t er event. Do note that plugin
eventsrun after the codein your controller and not instead of it or beforeit. The events must be implemented in system
plugins so that they always get |oaded by Joomlal before any controller gets the chance to run (remember, HMVC,
you may end up calling a controller from a module or plugin).

The signature for these plugins methodsis like this:

public function onBeforeConponent Control | erVi ewTask (FOFController &$controller, FOFInput
Both parameters are passed by reference, meaning that you can modify them from your plugin. There's a caveat:

by the time the onBef or e plugin event is called the model and view instances have already been created with the

previously existing FOFI nput instance. If you need to modify the model's state you will have to do something like

$control | er->get Thi shbdel ()->set State(' foo', $nyNewFooVal ue)

public function onAfterConponent ControllerViewTask (FOFController &$controller, FOFInput &

36

Component overview and reference

The $r et parameter contains the return value of the task method. It is passed by reference and you can modify it
from your plugin.

4. \Views

TheViewsarethelast wheel of an MV Ctriad. Their sole purposeinlifeisto render the datain a suitable representation
that makes sense. Usually this means rendering to HTML but they can also be used to render the data as JSON, XML,
CSV or even asimages, sound and video. It's up to you to decide what a " suitable" representation meansin the context
of your application.

Class and file naming conventions

The convention for naming theview classesisConponent Vi ewVi ewnane, e.g. TodoVi ewl t emfor acomponent
named com t odo and aview namedi t em Thelast part MUST match the singular/plural name of the specific view
you are rendering.

The view file name MUST follow the convention vi ew. f or mat . php, eg. vi ew. ht m . php. Thef or mat is
the representation format rendered by this view class. The most common formats —for which FOF provides default
implementations— are ht m , j son and csv. The format MUST match the value of the "format" input variable. If
none is specified, ht m will be assumed. Exception: thereisaformat called f or mwhich isan HTML rendering and
will be loaded when the value of the format input variable is set to ht i (or not set at all) aslong asthereisan XML
form for this view.

All View files are located in your component's views directories, in the respective front-end and back-end directory,
inside the respective view subfolder. For example, if you have a component called com t odo and a back-end view
named i t ens the view file for the HTML rendering isadmi ni strat or/ conponent s/ com t odo/ vi ews/
itens/view htm . php

If afileisnot present in the front-end, it will be attempted to be loaded from the back-end and vice versa. If the View
classis not loaded and a suitable file cannot be found FOF will fall back to one of the following, in this order:

1. The Default view. This is a special controller class following the naming conventions Conponent Vi ewDe-
faul t,eg. TodoVi ewDef aul t, foundinthedef aul t/ vi ew. f or mat . php fileinside your vi ews direc-
tory.

2. If adefault view is not found, FOF will fall back to creating a suitably configured instance of a FOFVi ew for-
mat-specific class, using convention over configuration to determine what the model object should do. For example,
if the current format is ht M FOF will create an instance of FOFVi ewHt i . If there is no suitable class found
you will get an error as FOF has no idea what to render.

View template files and their location

FOF uses default names to generate alist or form to edit, these names are linked to the task being executed.

Table2.3. View templates locations

Task name Filename Description
br owse defaul t. php OR|Thisisthefilethat showsthelist page
formdefaul t.xn
edit form php ORform form xnm |Thisisthefilethat showsthe edit page
read item phpORformitem xm |Thisisthefilethat shows the data of
a single record without being able to
edit the record

37

Component overview and reference

Thelocation of thefilesis aso pre-defined and based on the view name. This name comesin both singular and plural
form where the singular name represents the edit page and the plural name represents the list page. Let's say our view
iscaledt odo, the template files can be found in the following location:

Vi ews

| -- todo

| -- tnpl
formphp OR formformxn
itemphp OR formitem xm

| -- todos

| -- tnpl
default.php OR formdefault.xmn

Customising a specialised class

Unlike plain old Joomla! you are NOT supposed to copy and paste code when dealing with FOF. Our rule of thumb
isthat if you ever find yourself copying code from any FOFView class into your extension's specialised table class
you're doing it wrong.

FOF view can be customised very easily using the onTask methods. The Task here is the name of the controller
task they are related to. For example, onBr ows e runs when rendering the output of a browse task. There is a catch-
all method called onDi spl ay which executesif no suitable method isfound in the view class. Returning false from
these methods will result in a 403 Forbidden error.

Layouts, sub-templates and template overrides

The default filename of the template file to be used can be overridden with the |l ayout input variable. For example
if you feed an input variable named | ayout with avalue of f oobar FOF will look for f or m f oobar . xm and
f oobar . php inthet npl directory.

You can also specify sub-templates using the t pl parameter when calling the di spl ay() method of your view
class. By default FOF doesn't useit at all. You can only use it with custom controller tasks. In this case the tpl (a.k.a.
subtemplate) will be appended to the layout name with an underscorein between. Sofor | ayout =f oo andt pl =bar
FOF will belooking for thef oo_bar . php view templatefile.

All view template files are subject to template overrides. The view template will first be searched in the t emt
pl at es/ t enpl at e/ ht M / conponent / vi ewdirectory wheret enpl at e isthe name of your template, cont
ponent isthe name of your component (e.g. com t odo) and vi ewisthe name of your view. This allows end users
and site integrators to provide customised renderings suitable for their sites.

Joomla! version specific overrides

It is possible have different view templates per Joomla! version or version family. The correct view templateis chosen
automatically, without you writing asingle line of code.

Let's say that you have a browse view with your lovely def aul t . php view template file. And you want your
component to work on Joomlal 2.5 and 3.x. Oh, thehorror! The markup isdifferent for each Joomla! version, Javascript
has changed, different features are available... Well, no problem! FOF will automatically search for view template
files (or XML forms) suffixed with the Joomlal version family or version number.

For example, if you're running under Joomlal 2.5, FoF will look for def aul t. j 25. php, defaul t.j 2. php
and def aul t . php in this order. If you're running under Joomlal 3.2, FOF will look for def aul t. | 32. php,
defaul t.j 3. phpanddef aul t. php inthisorder. Thisallowsyou to have adifferent view templatefile for each
version family of Joomlal without ugly if-blocks and awkward code.

38

Component overview and reference

This feature also works with XML forms, eg. on Joomlal 25 a browse form will be looked for in
formdefault.j25.xm ,formdefault.j2. xm andform default.xm inthisorder.

Custom template view file to wrap an XML form

An XML form file is a great way to get started developing an application, but what if you want to add messages or
render moduels at the top/bottom of the form, add a sidebar or in any other way add your own HTML around the
rendered form? The answer is simple: you can use regular PHP-based view templates and XML formsside by sidein
the same view. Inside your .php file you can use $this->getRenderedForm() to return the XML form file rendered as
HTML. Thisalows customising the layout (e.g. adding information before/after the form) while still using the XML
file to render the actua form. For example, you could insert this code in your custom .php view template file:

<?php

/1 Show sone stuff before the form
?><hl>Hel | o, world!</hl>
<p>This is printed above the fornx/p>

<?php
/1 Show the rendered form
echo $t hi s->get Render edForm() ;

/1 Show sone stuff after the form
?>

<p>This is printed bel ow the fornx/p>

Thisworkswith all forms (browse, edit, read). For example, if you want to customise abrowse view template you will
need to create both f or m def aul t . xm and def aul t. php inthet npl directory of your view.

Automatic views and web services

FOF can automatically render your component's output in JSON and CSV formats. Y ou do not have to write any code
whatsoever. Just pass on an input variable named f or mat with avalue of j son or csv respectively. In the typical
case where you get the input variables from the request this means appending &f or mat =j son or &f or mat =csv
respectively. You can, of course, customise the output of either format using view classesif you need to.

The JSON format can be used to provide web services with integrated hypermedia (following the HAL specification).
All you need to do is to tell FOFVi ewJson to use hypermedia, either by setting $t hi s- >useHypernedi a =
t rue; inyour specialised JSON view class or, much easier, using thef of . xmi configuration file.

Custom render classes ("renderers")

FOF uses the Render package to convert XML formsinto HTML and handle things such as submenus. It ships with
render classes suitable for use on regular Joomlal 2.5, regular Joomlal 3.2 and one for when using Akeeba Strapper.
The correct render class is chose automatically, via environment detection. However, you may want to implement a
custom render class. Having to put it inside FOF'slibrary directory would bein violation of best coding practices. Even
worse, it would affect all viewsin all FOF-powered componentson thesitewhichisaterribleidea. That'swhy theView
constructor allows you to instantiate and attach a custom render class. Y ou will need to specialisethe ___const r uct
method of your View classlike this:

function __construct($config = array())

{

parent::__construct($config);

39

Component overview and reference

$cust onRender er = new Your Cust onRender d ass() ;
sel f::regi sterRenderer($cust onRenderer);

}

This View will now use the custom renderer to display itself.

5. Dispatcher

The Dispatcher is what handles the request on behalf of your component (be it a web request or an HMV C request).
Its primary job isto decide which controller to create and which task to run. Its secondary job isto handle transparent
authentication which comes in really handy if you want to perform remote requests to your component, interacting
with access-restricted data or actions (viewing items protected behind alogin, performing privileged operations such
as creating / editing / deleting records and so on).

Class and file naming conventions

The convention for naming the dispatcher classesisConponent Di spat cher, eg. TodoDi spat cher foracom-
ponent named com t odo. Thelast part MUST be Di spat cher.

The controller file name MUST be di spat cher . php. All Dispatcher files are located in your component's main
front-end or back-end directories. If afile is not present in the front-end, it will be attempted to be loaded from the
back-end but NOT viceversa. If the Dispatcher classisnot loaded and asuitablefile cannot be found FOF will fall back
to creating a suitably configured instance of FOFDi spat cher, using convention over configuration to determine
what the Dispatcher object should do.

Customising a specialised class

Unlike plain old Joomlal you are NOT supposed to copy and paste code when dealing with FOF. Our rule of thumb
isthat if you ever find yourself copying code from FOFDispatcher into your extension's specialised table class you're
doing it wrong.

FOF dispatcher can be customised very easily using the onBef or eDi spat ch / onAf t er Di spat ch methods.
onBef or eDi spat ch runs before the dispatcher executes and onAf t er Di spat ch runsright after the dispatcher
executes. Returning false will result in a 403 Forbidden error. Specific implementation notes for each case can be
found in the docblocks of each event method.

5.1. Transparent authentication

Transparent authentication allows FOF to authenticate a user using Basic Authentication or URL parameters. This
allows you to create web services or directly access pages which require a logged in users without using Joomlal
session cookies.

The authentication credentials can be provided via two methods: Basic Authentication or a URL parameter. The au-
thentication credentials can either be a username and password pair transmitted in plaintext (not recommended unless
you are forcibly using HTTPS with a commercially signed SSL certificate) or encrypted. The encrypted information
uses Time-Based One Time Passwords (TOTP) to allow you to communicate the credentials securely, without the
burden of public key cryptography, while at the same time maintaining an intrinsically very narrow window of oppor-
tunity. Furthermore, since the effective encryption key is modified every few seconds it makes an attack against it
dlightly harder than using regular symmetric AES-128 cryptography.

Transparent authentication is enabled by default, but doesn’t use TOTP.

40

Component overview and reference

Setting it up

Setting up transparent authentication requires you to modify your component’ s Dispatcher class, namely its___con-
st ruct () method, to change the values of some protected fields.

The available fields are:

$ fof Auth_timeStepThe time step, in seconds, for the time based one time passwords (TOTP) used for encryption.
The default value is 6 seconds. The window of opportunity for an attacker is 2x-3x as much, i.e.
12-18 seconds using the default value. Thisisadequately high to be practical and too low to allow
aredligtic attack by a hacker.

I mportant

If you change this option you have to notify the consumers of the service to make the
same change, otherwiseyour TOTPswill bevastly different and communication will fail.

$ fofAuth_Key The Base32 encoded key for TOTP. Please note that this is Base32, not Base64. Only required
if you're going to use encryption.

$ fof Auth_Formats Which result formats should be handled by the transparent authentication. This is an array, by

defaultarray('json', '"csv', 'xm', 'raw).Werecommendonly using non-HTML
formatsin here.

$ fofAuth_L ogoutOBRefafault it's true and it means that once the component finishes executing, FOF will log out
the user it authenticated using transparent authentication. This is a precaution against someone
intercepting and abusing the session cookie Joomla! will be sending back to the client, aswell as
preventing the sessions table from filling up.

$ fofAuth_ AuthMethodarray of supported authentication methods. Only use the ones that make sense for your appli-
cation. Avoid using the *_Plaintext ones, please. The possible valuesin the array are:

e« HTTPBasicAuth_TOTP HTTP Basic Authentication using encrypted information protected
with a TOTP (the username must be"_fof auth")

e QueryString TOTP Encrypted information protected with a TOTP passed in the _f of au-
t henti cat i on query string parameter

e HTTPBasicAuth_Plaintext HTTP Basic Authentication using a username and password pair
in plain text

e QueryString_Plaintext Plaintext JSON-encoded username and password pair passed in the
_fofaut henti cati on query string parameter

When you are using the QueryString_ TOTP method you can pass your authentication information as GET or POST

variable called _f of aut hent i cat i on with the value being the URL encoded cryptogram of the authentication
credentials (see further down).

How to get a TOTP key

Any Base32 string can be used as a TOTP key as long as it expands to exactly 10 characters. If you don’t fedl like
guessing, you can simply do:

$totp = new FOFEncrypt Tot p();
$secret = $totp->generateSecret();

41

Component overview and reference

You have to share this secret key with al clients wishing to connect to your component via a secure channel. This
secret key must also be set inthe _f of Aut h_Key variable.

How to construct and supply an authentication set

The authentication set is a representation of the username and password of the user you want FOF to log in using
transparent authentication. Its format depends on the authentication method.

Before going into much detail, we should consider an FOF authentication key to be a JSON-encoded object containing
the keys username and password. E.g.:

{ “usernane”: “sanple_user”, “password’: “$3Cr3+" }

Thisisused with all but one authentication methods. Encryption of the FOF authentication key, used with all *_TOTP
methods, is discussed further down this document.

If you are using HTTPBasicAuth_Plaintext method, you have to supply your username and password using HTTP
Basic Authentication. The username is the username of the user you want to log in and the password is the password
of the user you want to log in. Thisisthe easiest and most insecure authentication method.

If you are using the HTTPBasicAuth_TOTP method, you have to supply ausername of _f of _aut h (including the
leading underscore) and as the password enter the encrypted FOF authentication key.

If you are using the QueryString_Plaintext method you haveto supply aGET or POST query parameter with aname of
_fofaut henti cati on (including theleading underscore). Its value must be the URL encoded FOF authentication

key.

If you are using the QueryString_TOTP method you have to supply a GET or POST query parameter with a name of
_fofauthenti cati on (including theleading underscore). Itsvalue must be the URL encoded FOF authentication

key.
Encrypting the FOF authentication key

Assuming you are doing this from a FOF-powered component, you can do something like this:

$timeStep = 6; // Change this if you have a different value in your D spatcher
$aut hKey = j son_encode(array(
'usernane' => $usernane,
' password' => $password
));
$totp = new FOFEncrypt Tot p($ti meSt ep) ;
$ot p = $t ot p- >get Code($secr et Key) ;
$crypt oKey = hash(' sha256', $this->_fof Aut h_Key. $otp);
$aes = new FOFEncrypt Aes($crypt oKey);
$encrypt edAut hKey = $aes- >encrypt Stri ng($aut hKey) ;

If you can get your hands on a TOTP and AES-256 implementation for your favourite programming language you
can usetalk to FOF-powered components through transparent authentication. Tip: TOTP libraries are usually labelled
as being Google Authenticator libraries. Google Authenticator simply uses TOTP with a temp step of 30 seconds.
Most such libraries are able to change the time step, thus possible to use with FOF. In fact, that's how FOF's TOTP
library was derived.

6. Toolbar

The Toolbar isthe part of your components which handles the display of the component's title and toolbar buttons, as
well as the toolbar submenu (links or tabs under the toolbar). While usually used in the back-end of your site, FOF

42

Component overview and reference

components can readily render atoolbar in the front-end part of the component as well. Do note that you will need to
provide your own CSSto style the toolbar in the front-end as Joomlal templates lack such a styling.

Class and file naming conventions

The convention for naming thetoolbar classesisConponent Tool bar ,e.g. TodoTool bar for acomponent named
com t odo. Thelast part MUST be Tool bar .

The controller filename MUST bet ool bar . php. All Toolbar files arelocated in your component's main directory,
inthefront-end and back-end. If afileisnot present in thefront-end, it will be attempted to beloaded from the back-end.
If the Toolbar classisnot |oaded and a suitablefile cannot be found FOF will fall back to creating asuitably configured
instance of FOFToobar, using convention over configuration to determine what the controller object should do.

Customising a specialised class

FOF toolbar can be customised very easily using methods following one of the following conventions, from most
specific to least specific:

onVi ew for example onl t ems Br owse. The name consists of the word on in lowercase, followed by

naneTasknane camel cased view and task names, in this order. When the task is Br ows e the view name MUST
be plural. For any other task the view name MUST be singular. For example: onl t ensBr owse
and onl t emAdd

onVi ewnarne for exampleonl t ens. The name consists of the word on in lowercase, followed by camel cased
view name.

onTasknane for exampleonBr ows e. The name consists of theword on inlowercase, followed by camel cased
task name.

The method to be called is selected from the most to the least specific. For example, if you have a component named
com t odo and aview named i t ens, with the task browse being called FOF will search for the following method
names, in thisorder: onl t ensBr owse, onl t ens, onBr owse

Please note that any of these methods should only modify thetoolbar and not perform any other kind of data processing.

Customising the link bar

Thelink bar isthe area normally displayed right below the toolbar in the back-end of the site. It isusually rendered as
flat links (Joomlal 2.5), aleft-hand sidebar (Joomlal 3.0 and later) or tabs (when using Akeeba Strapper). The exact
rendering depends on the template. The interesting thing is how these links are populated, described below.

Automatically populated link bar

FOF will normally look inside your component's views directory and |ook for plural views. These views are automati-
cally added to thelink bar in alphabetical order. Exception: aview called cpanel will alwaysbe added to thelink bar.

If you want a view to not be included in the link bar, please create a file named ski p. xml and put it inside its
directory. FOF will see that and refrain from adding this view to the link bar.

If you want to modify the ordering of aview you haveto create or modify therret adat a. xml fileinsideyour view's
directory. The<f of | i b> sectioninsidethe et adat a. xm fileisread by FOF. For example:

<?xm version="1.0" encodi ng="utf-8"?>

43

Component overview and reference

<met adat a>
<foflib>
<or dering>12</orderi ng>
</foflib>
<view title="COM FOOBAR VI EW | TEMS_TI TLE" >
<nmessage><! [CDATA] COM FOOBAR VI EW | TEMS_DES(C]] ></ nessage>
</ vi ew>
</ net adat a>

tells FOF that this view should be the 12th link in the link bar.

If you're not using a net adat a. xm file and have a view called cpanel or cpanel s then it will always be
reordered to the top of thelink bar list.

Fully customised link bar

The automatically generated link bar is usually enough, but sometimes you want a more complex presentation. For
example, you want to show different link bars depending on a configuration setting (e.g. a"Power user" switch in your
component's options), or a drop-down menu. To thisend, FOFToobar provides the following methods.

public function clearLinks()
Removes all links from the link bar, allowing you to start from a clean sate.
public function &getLinks()

Returns the raw data for the links in the link bar. We recommend against using it as the internal data structure may
change in the future.

public function appendLi nk($narme, $link = null, $active = false, $icon = null,

Appends alink to the link bar. If you use the last option ($par ent) you are creating a submenu item whose parent
isthe $par ent item. Y ou reference the parent item by its name (i.e. the $nanme parameter you used in the parent
element). Drop-downs only work in a. Joomlal 3.0 and later without any additional reguirements; or b. Joomlal 2.5 but
only when using the optional Akeeba Strapper package which back ports jQuery and Bootstrap to Joomlal 2.5 sites.

In order to use these methods you will haveto overridether ender Subnmenu method in FOFToobar .

When the link bar is rendered

The link bar is rendered in all HTML views, unless you are have an input variable named t npl with a value of
conponent . Typicaly, this means that you are passing a query string parameter & npl =conponent to the URL
of your component.

Y ou can force the entire toolbar (and, by extent, the link bar) to be displayed or hidden using ther ender _t ool bar
input variable. When you set it to 0 the toolbar and link bar will not be displayed. When you set it to 1 the toolbar and
link bar will be displayed (even when you uset npl =conponent).

/7. HMVC

Before we say anything else, let's define what HMV C means in the context of FOF. The H stands for "Hierarchical”.
That isto say there's a hierarchy of MV C calls. In very simple terms, HMV C alows you to call an MV C triad from
anywhere el se.

$par ent

Component overview and reference

Practical uses:
 Showing acomponent'sview inside amodule, without having to rewrite the model and view logic inside the module.

« Allowing a plugin (e.g. a system or content plugin) to use the rendered output of a component and inject it to the
output of the page or send it as an email.

 Displaying aview of the same or a different component within a component.

The possihilities are endless.

How to use it?

Y ou aready know it, you just didn't realise it. Here's the secret sauce:
FOFDi spat cher: : get Tnpl nstance(' com foobar', 'itenms', array('layout' => 'fancy'))->dispatch

You are simply creating an instance of the dispatcher of the component you want, telling it which view to render and
giving it an option configuration array (the last argument in the method call). Then you just call the dispatch() method
and let it render.

If you want to get the output in a variable you have to do something like this:

@b_start();
FOFDi spat cher: : get Tnpl nst ance(' com foobar', 'itens', array('layout' => 'fancy'))->dispatch
$result = ob_end_cl ean();

If you need to passinput variables to the dispatcher you can do something like this:
FOFDi spat cher: : get Tnpl nstance(' com foobar', 'itens', array('input' => $input))->dispatch()

where $i nput can be an indexed array, a stdClass object or —preferred— a FOFI nput or JI nput instance. For
example:

$i nputvars = array(
limt! => 10,
"limtstart' => 0,
' f oobar' => ' paz'
)
$i nput = new FOFI nput ($i nput vars);
FOFDi spat cher: : get Tnpl nstance(' com foobar', "itens', array('input' => $input))->dispatch()

And, of course, you can mix and match al of the above ideas to something like:

$i nputvars = array(

limt! => 10,
"limtstart' => 0,
"formt’ => 'json'
)
$i nput = new FOFI nput ($i nputvars);
@b_start();
FOFDi spat cher: : get Tnpl nst ance(' com foobar', 'itens', array('input' => $input))->dispatch()

$j son = ob_end_cl ean();

See the awesome thing we just did? We got the first 10 items of com_foobar in JSON format in the $json variable.
Just a side note. This example also screws up the document MIME type if you useit in an HTML view. Be warned.

45

Component overview and reference

8. ACL configuration

Another key feature of FOF are automatic ACL checks: before an user is going to do anything, a permission check
is made. For example, before browsing alist of records, FOF checks for cor e. br owse permission or when we're
trying to save arecord, permission cor e. edi t ischecked.

Adding ACL support in your extension

In these sections we will analyze our example component To-Do List and we will retrace the steps needed in order
to add and manage ACL inside the extension.

What we want to achieve is a permission system based on two levels: we will define global wide permissions, then we
will add "exceptions' to single records. For example, we need that Registered users can always edit records, but we
want to prevent them from editing on a single record only because is very important for us.

Defining the actions

First of al, we have to define the actions that an user could perform, so create the file access. xm inside your
extension backend directory and add the following lines:

<?xm version="1.0" encodi ng="utf-8"?>
<access component ="com t odo" >
<secti on nanme="conponent">

<action name="core. admn" titl e="JACTI ON_ADM N' descri ption="JACTI ON_ADM N_COWPC
<action nanme="core. manage" titl e="JACTI ON_MANAGE" descri ption="JACTI ON_MANAGE CQOv
<action name="core.create" titl e="JACTI ON_CREATE" descri ption="JACTI ON_CREATE_ CQOv
<action name="core. del ete" titl e="JACTI ON_DELETE" descri ption="JACTI ON_DELETE CQOv
<action nanme="core.edit" title="JACTI ON_EDI T" descri ption="JACTI ON_EDI T_COVPONE
<action name="core. edit.own" title="JACTI ON_EDI TOAN' descri pti on="JACTI ON_EDI TOMN_C

<action name="core.edit.state" title="JACTI ON_EDI TSTATE" descri ption="JACTI ON_EDI TSTA

</ section>

<section name="unit">
<l-- Actions to be used in for unit -->

<action name="core.delete" title="JACTI ON DELETE" descri ption="JACTI ON _DELETE COVPONEN
<action name="core.edit" title="JACTION_EDI T* descri ption="JACTI ON_EDI T_COVPONENT_DESC
<action name="core.edit.own" title="JACTI ON_ EDI TOAWN' descri pti on="JACTI ON_EDI TOAN_COWP
<action name="core.edit.state" title="JACTI ON_EDI TSTATE" descri pti on="JACTI ON_EDI TSTAT

</ section>
</ access>

Asyou can see, there are two sections: one for the whole component and another related to single records.
I mportant

FOF will assume that the following permissions are defined inside your component:
core. adni n, core. manage, core.create, core.delete, core.edit, core. edit.own,
core.edit.state.

In order to fully take advantage of FOF features, we strongly suggest you to define the above actions.

Editing component permissions

Inyour confi g. xm fileyou haveto add the following lines:

46

Component overview and reference

<fiel dset nane="perm ssions" | abel ="JCONFI G_PERM SSI ONS_LABEL" descri ption="JCONFI G PERM S
<field nane="rul es" type="rul es"
| abel =" JCONFI G_PERM SSI ONS_LABEL"
cl ass="i nput box™"
filter="rul es"
conponent =" com t odo"
secti on="conponent"” />
</fieldset>

In thisway Joomla! will render a Permissions tab inside your component options.

Editing record permissions

First of al we have to add a column to our table, as per FOF convention its name should be asset _i d (however
you could setup an dias):

ALTER TABLE "#__todo_itenms™ ADD “asset_id | NT NOT NULL ;

Then you have to add two fields on your XML form: the saved asset_id and the rule field, that is used to set the
permissions to each user group:

<fi el dset nane="rul es">
<field nane="asset id" type="hidden" enptylabel ="true" filter="unset" />

<field nane="rul es"
type="rul es"
enptyl abel ="t rue"
transl ate_| abel ="f al se"
filter="rul es"
val i dat e="rul es"
cl ass="i nput box"
conponent =" com t odo"
section="unit" />

</fieldset>

I mportant

At the timing of thiswriting (2013-12-03), the Joomlal "rules’ field is buggy. If you want add per item ACL
privileges you must use FOF XML forms, since we found aworkaround for thisissue.

Finally, you have update your table class and add new method, named get Asset Par ent | d. You have to do that
since when we have to tell Joomlal what's the parent of our asset record, in this case it would be the component itself:

public function getAssetParentld($table = null, $id = null)

{
$db = JFactory:: get Dbo();

$query = $db->get Query(true)
->sel ect ($db->gn('id"))
->fron($db->gn(' #__assets'))

- >wher e($db->gn(' nane').' = '.$db->q(' com todo'))
- >wher e($db->gn(' parent _id').' = 1")
->wher e($db->gn('level').' = 1");

$parent _id = $db- >set Query($query) - >l oadResul t ();

47

Component overview and reference

i f(!$parent_id)

{
return parent::getAssetParentld($table, $id);
}
el se
{
return $parent_id;
}

}

And that'sit! Now enjoy the ACL in your extension.

9. The database cursor iterator
(FOFDatabaselterator)

Note
Available since FOF 2.2.0

In many cases you have to sift through alarge number of database records and you want to use the magic of FOFTable.
Thetraditional way to do that wasto use FOFModel::getltemList to get abig array of stdClass objects, iterate through it
with foreach, mapping each stdClass object to your FOFTable instance. Thisis a performance and resource nightmare.
PHP has to retrieve the entire list of records from the database and cast it to stupid stdClass objects, then you have
to remap them one by one as FOFTable instances. The time and memory required to do that makes it impractical for
lists over afew dozen records.

Enter the FOFDatabaselterator. Thisis a regular, non-resettable and non-seekable PHP iterator. This means that you
can only fetch its current record or proceed to the next one. Y ou cannot scroll back to the beginning and you cannot
move to an arbitrary location within the iterator (unlike an array). However, it will only load one record in memory
at atime and deliver it to you as a FOFTable object. The magic behind it liesin the way it isimplemented: it is given
a database cursor (pretty much, a resource pointing to the result set of a database query) and it uses standard PHP
featuresto only ever fetch the next item from this cursor. Behind the scenesit will get a new instance of the FOFTable
class and use its bind() method to bind the datato it, then return you the table object. Since it's an lterator you can use
it in aforeach statement to iterate through the entire list of records, one FOFTable object at atime.

Even though you can create a FOFDatabaselterator directly, you will hardly ever need to do so. A FOFTablelterator
is returned by FOFModel's getlterator() method and the FOFT ableRelations' methods which return multiple records.
You are advised to use the iterator whenever you reasonably expect to deal with large numbers of database records,
especialy if you need to act upon them.

The only drawback is that by using FOFModel's getlterator the onProcessList method, which is used for record list
post-processing, is never called. Thisis actually a good thing. You can migrate that logic into the onBeforeBind()
method of your table, where it belongs architecturally. After all, you are post-processing alist of records, one record
at atime. What is more natural than doing so in the one class dedicated to handling one record at atime?

10. Utility classes

FOF comes with certain classes that are designed to make your life as a Joomlal extensions devel oper much easier.
They handle things like installation, updates and database schema management. This code has been battle tested in
our own components over the years.

48

Component overview and reference

10.1. The installation script helper

Note

Available since FOF 2.3.0

A FOF component usually needs to pack and install several things. At the very least it includes the component itself
and acopy of the FOF library. Joomlal offersamethod for installing multiple extensions at once, called the " package”
extension type. However, "package" extensionsare al or nothing: you either install everything included in your pack-
age or nothing at all. Quite obviously this can't be used to prevent installing an old version of FOF on top of a new
one. FOF itself is of the "library" extension type. You'd think that a "library" package is checked for its version so
that old versions can't be installed on top of new ones. Wrong. Y ou might thing that the "library" package can have
an installation script, like components and plugins, to determine if it can be installed, preventing an old version of the
library overwriting a new one. Wrong, again. Joomlal's extensions installer is coded in the most short-sighted way
possible. All islost?

Not so fast! We have a few aces up our sleeves. The solution we've been using in our company over the yearsis a
"component" package with asmart installer script which can install our component, any modules and plugins we may
be including with it and FOF (and, possibly, Akeeba Strapper) if it's not installed or out-of-date. The "secret sauce" of
our installer script is now inside FOF 2.3.0 and later, in the FOFULtilslnstallscript class. Here we are going to explain
how to useit.

Package layout

The contents of your package need to follow a specific folder layout. Here's the proposed layout:

<r oot >
+- - backend Conponent files under site's "adm nistrator" directory
+-- frontend Conmponent files under site's root director

+-- media OPTI ONAL. Component media files, under site's "nedia" directory

+-- cli OPTI ONAL. Conponent CLI script installed under site's "cli" directory
+-- language OPTIONAL. Language files for your conponent.

+-- fof FOF installation files (extract FOF' s library package in here)

+-- strapper OPTIONAL. Akeeba Strapper (extract Strapper's package in here)
+-- modul es OPTI ONAL. Mbdul es bundl ed with the conponent
| +-- admin Admi ni strator (back-end) nodul es
| | +-- nymodule Installation files for nmod_nynodul e adnmi n nodul e
| +-- site Site (front-end) nodul es
| +-- nymodule Installation files for nmod_nmynodul e site nodul e
+-- plugins OPTI ONAL. Pl ugi ns bundled with the conponent

+-- system System plugins

| +-- foobar Installation files for plg_systemfoobar plugin

+-- whatever Plugins installed in the "whatever" plugin folder

+-- baz Installation fles for plg_whatever_baz plugin

Thebackend, f ront end, nedi a andl anguage directoriescan haveany nameyou want asthey areNOT handled

by the installation script. They are defined in your component's XML manifest and it's up to Joomlal to decide what
to do with them. The other directories, however, do play an important role.

Tip

If you don't like our naming conventions you can choose different names for the top-level directories by
specialising the FOFUtilsl nstallscript class. More on that later on!

49

Component overview and reference

Tip

Feel lost? Y ou may want to see how we do thisin our own components. A great place where the full power
of the installation script helper is put to action is Akeeba Subscriptions [https://github.com/akeebal/akeeba-
subs/bl ob/devel opment/component/script.akeebasubs.php].

The fof directory isthe one you MUST have. It contains a copy of FOF'sinstallation files. Just extract the latest FOF
library packagein there.

The strapper directory can contain acopy of Akeeba Strapper, our Bootstrap 2.x compatibility layer, if you are using
it in your component. In this case just extract the Strapper library into this directory.

The cli directory contains command-line scripts which will be copied to your site's "cli" directory. They are typically
used to set up CRON jobs for housekeeping or other lengthy operations.

The modules directory contains all the modules you want to bundle with your extension. The suggested directory
layout ishaving two sub-directoriescalledadni n andsi t e containing theadministrator (back-end) and public (front-
end) modules respectively. Each module€'sinstallation file go inside a sub-directory of theadmni n or si t e directories
depending on where it should be installed. The name of the modul€e's directory must match its extension name as set
in the XML manifest. You can also skip theadmi n or si t e directories and put everything under nodul es but we
have found that this will make your life much harder as your extension starts growing bigger. Trust us on that.

The plugins directory contains all the plugins you want to bundle with your extension. Y ou need to have one sub-
directory for each Joomlal plugin folder, e.g. syst em cont ent , user etc or even custom plugin folders such as
akeebasubs, ats, whatever, ... Inside each sub-directory create one directory per plugin.

Important note about XML manifests

A few notes on XML manifests. Please note that due to one of the myriads of Jinstaller's bugs and limitations your
component's XML manifest SHOULD be placed in the package's root and MUST begin with aletter before "L". We
recommend using the following naming convention to prevent package installation problems due to Joomlal being
outright silly in its handling of manifests:

» Components; com_something.xml
 Plugins: plg_something.xml

* Modules: mod_something.xml

Libraries: lib_something.xml
* Files: files_something.xml

Using this convention you ensure that when you list all XML manifests in the package and sort them a phabetically
the component's manifest will show up first. This is exactly how Joomlal decides which XML manifest to use for
installing a package: list al of them, alpha-sort them and pick the first one.

Creating your installation script

Let's say your component is called Foobar and its Joomlal name is com foobar. You need to create the file
scri pt. foobar. phpandplaceitintheroot of your package. Thefile nameand location of the script are extremely
important! They are defined in your XML manifest, using aline like this:

<scriptfile>script.foobar.php</scriptfile>

Y ou are advised to follow this naming convention and place the script in your package's root to avoid nasty surprises.

50

https://github.com/akeeba/akeebasubs/blob/development/component/script.akeebasubs.php
https://github.com/akeeba/akeebasubs/blob/development/component/script.akeebasubs.php
https://github.com/akeeba/akeebasubs/blob/development/component/script.akeebasubs.php

Component overview and reference

Next up, you need to put the following contents in your script file:

<?php
/1 no direct access
defined(' _JEXEC) or die;

/1 Load FOF if not already | oaded
if (!defined('FOF_I NCLUDED))
{
$paths = array(
(defined(' JPATH LI BRARIES') ? JPATH LIBRARIES : JPATH ROOT . '/libraries')
__DIR_ . '/fof/include.php',

)

foreach ($paths as $fil ePat h)

{
i f (!defined(' FOF_INCLUDED) && file exists($filePath))

@ ncl ude_once $fil ePat h;
}

}
}

cl ass Com Foobarl nstallerScript extends FOFUtil slnstallscript
{

protected $conmponent Nane = 'com foobar';

protected $conmponentTitle = ' Foobar Conponent';

}
Let's analyse this script. We begin by preventing direct access to the file in the standard Joomlal way:

/1 no direct access
defined(' _JEXEC) or die;

Then we have to load FOF. We need to do that because the FOFUTilsl nstall script which powers our installation script
is part of FOF. However FOF might not be already installed on the site. In this case welll be loading it from our
installation directory. Speaking of which, an important note to understand why this works.

I mportant

Y our installation script is|oaded from the component's installation directory, typically atemporary directory
created by the Joomlal extensionsinstaller. It isloaded BEFORE Joomlal installs/ updates/ uninstalls your
component. Thisisvery important to keep in mind, especially if you are going to work with relative directories
inyour customised installation script.

So here we go loading FOF:

/! Load FOF if not already | oaded
if (!defined('FOF_I NCLUDED))
{
$pat hs = array(
(defined(' JPATH LI BRARIES') ? JPATH LIBRARIES : JPATH ROOT . '/libraries")
_ DR _ . '/fof/include.php',

)

51

"/fOf/inc

"/fOf/inc

Component overview and reference

foreach ($paths as $fil ePath)

{
if (!defined(' FOF_INCLUDED) && file_exists($filePath))
{

}
}
}

Please note that if the FOF directory in your package has a different name you will need to modify _ DIR__. '/fof/
include.php' to reflect the name you chose and nothing else at al in this block of code.

@ ncl ude_once $fil ePath;

Next up we define our installation script class for Joomla! to find it:

cl ass Com FoobarlnstallerScript extends FOFUtil slnstallscript
Warning

Naming your installation classis EXTREMELY IMPORTANT. If you do not follow the naming convention
TO THE LETTER Joomla! will not "see" your installation script. This results to immense amounts of hair
pulling as Joomlal throws no error whatsoever when you tell it to use an installation script and it doesn't
find one.

The naming is extremely important. The name must begin with the Joomlal name of your component, with the Com
and extension hame capitalised, i.e. Com_Foaobar. If you use something like com_foobar, Com_foobar, com_Foobar,
COM_Foaobar, COM_FOOBAR etc Joomlal WILL NOT BE ABLE TO FIND YOUR INSTALLATION SCRIPT
AND WILL NOT RUN IT AT ALL. Then it must be followed by exactly InstallerScript. Again, case matters. If you
use installerScript, installerscript etc Joomlal will NOT be able to find your installation script. Mind your casel

Thefinal few linestell the installation script the component name and the human-readable title.

{
protected $conmponent Nanme = ' com foobar';
protected $conmponentTitle = ' Foobar Conponent';

}

Asis, theinstallation script will do the following:
1. Make sure your component is being installed on Joomla! 2.5.6 or later using PHP 5.3.3 or later

2. Ingtall or update your database tables using the XML schema files (see the database schema installer / updater /
removal class)

3. Install or update FOF if the version bundled with your component is newer than the installed one
4. Install or update Akeeba Strapper if the version bundled with your component is newer than the installed one

5. Work around known Joomla! bugs affecting the generation / update of administrator menu itemsfor newly installed
and update components

6. Display an installation overview page, letting the user of what wasinstalled on their site
When uninstalling the component, the installation script asis right now will do the following:

1. Remove your database tables using the XML schema files (see the database schema installer / updater / removal
class)

2. Display an uninstallation overview page, letting the user of what was removed from their site

52

Component overview and reference

Warning

NEVER, EVER uninstall FOF or Akeeba Strapper when uninstalling your component. Joomlal does not
provide away to track dependencies. Asaresult you can never know if anything elseinstalled onyour client's
siteisusing FOF or Akeeba Strapper, making their removal problematic (you could break another developer's
perfectly working code). If any developer is caught doing that we will have to put them on a blacklist and
take action against their software.

Customising the installation script

All customisation can be done by overriding the protected properties and methods of FOFULilslnstallscript. The prop-
ertiesare:

componentName MANDATORY . The component's name, e.g. ‘com_foobar'. Y ou absolutely need to set this, oth-
erwise

componentTitle MANDATORY. The component's human readable title, e.g. ‘My Foobar Component'. This is
shown in the installation and uninstallation overview page.

installation_queue Thelist of extramodules and pluginsto install on component installation / update and remove on
component uninstallation. Thisisan array which looks like this:

protected $installation_queue = array(
/1 nodules => { (folder) =>{ (rmodule) => { (position), (published) } }* }°
"modul es' => array(
"admin' => array(

"adm nnodul €' => array(' cpanel', 1),
)1
"site' => array(
"nmynodul e’ => array('position-1', 0),
"ot hernmodul e => array('position-2', 1),
)

)
/1 plugins => { (folder) =>{ (elenent) => (published) }* }*
"plugins' => array(
‘system => array(
'foobar' => 1,
"baz' => 0
)
)
)

The moduleskey is an array containing exactly two keys, admin and site, both being arrays con-
taining thelist of administrator (back-end) and site (front-end) modulesto be installed respective-

ly.

Each module definition consists of a key which is the module name and its content is an array
with two values. The first value is the position the module should be installed to and the second
value indicated whether the module will be published by default.

In the example above the adminmodule is an administrator module which will be placed in the
cpanel module position and published whenever the component isinstalled or updated.

The plugins key is an array containing one or more keys. Each key is the name of a Joomlal
plugins folder and its contentsis an array containing the list of pluginsto install.

53

Component overview and reference

Each plugin definition consists of akey which isthe plugin name and its content is avalue which
indicates whether the plugin will be published by default.

In the example above the plg_system foobar plugin will be published whenever the component is
installed or updated. The plg_system_baz plugin, however, will not be published or unpublished
whenever the component isinstalled or updated.

uninstallation_queuerlhe list of obsolete extra modules and plugins to uninstall on component upgrade / installation.

removeFilesFree

Please note that thisISNOT used when uninstalling the component. When you uninstall the com-
ponent all the plugins and modules listed in $installation_queue will be removed automatically.
The reason of $uninstallation_gueue's existence is asimple way to uninstall obsolete plugins and
modules when you update a component. It is an array like this:

protected $uninstallation_queue = array(
/1 nodules => { (folder) =>{ (nodule) }* }*
"modul es’ => array(
"admin' => array(
"adm nobsol et e’
),
"site' => array()
),
[/l plugins => { (folder) =>{ (elenent) }* }*
"plugins' => array(
"system => array(
' obsol et epl ugi n'
),
)
);

The moduleskey is an array containing exactly two keys, admin and site, both being arrays con-
taining the list of administrator (back-end) and site (front-end) modules to be uninstalled respec-
tively.

Each module definition consists of a single value which is the module name to be uninstalled.

In the example above the adminobsolete is an administrator module which will be uninstalled
when you install or upgrade the component.

The plugins key is an array containing one or more keys. Each key is the name of a Joomlal
plugins folder and its contentsis an array containing the list of pluginsto uninstall.

Each plugin definition consists of a single value which is the plugin name.

In the example above the plg_system obsoleteplugin plugin will be uninstalled whenever the
component isinstalled or updated.

Obsolete files and folders to remove from the free version only. This is used when you move a
feature from the free version of your extension to its paid version ($isPaid is true). If you don't
have such a distinction you can ignore this and use the $removeFilesAllVersion option instead.
Theformat is:

protected $renoveFil esFree = array(
"files' => array(
"admi ni strator/conponent s/ com foobar/ hel pers/what ever. php'

).

Component overview and reference

removeFilesAl-
IVersions

cliScriptFiles

cliSourcePath

fof SourcePath

strapperSour-
cePath

modul esSour-
cePath

pluginsSour-
cePath

schemaXml-
PathRelative

schemaXmlPath

minimumPH-
PVersion

"folders' => array(
"admi ni strator/conponent s/ com foobar/baz’
)
);

The array has exactly two keys. Thefileskey is an array containing alist of files to be removed
on installation / update. The folders key is an array containing alist of folders to be recursively
removed on installation / update. Files and folders are given as paths relative to the site's root.

Obsolete files and folders to remove from both paid and free releases. This is used when you
refactor code and some files inevitably become obsolete and need to be removed. These filesare
aways removed, no matter what the $isPaid value is Its format is the same as removeFilesFree.

A list of all CLI scriptsto be copied to the "cli" directory of the site. These are copied from the
package directory defined in $cliSourcePath. Itsformat is a simple array listing the names of the
filesto be copied.

The path inside your package where cli scripts are stored. Please remember that this is the path
inside your package, NOT the path inside your user's site.

The path inside your package where FOF is stored. Please remember that this is the path inside
your package, NOT the path inside your user's site.

The path inside your package where Akeeba Strapper is stored. Please remember that thisis the
path inside your package, NOT the path inside your user's site.

Installing Akeeba Strapper with your component is optional. If this path does not exist Akeeba
Strapper will smply not beinstalled.

The path inside your package where modulesto be installed are stored. Please remember that this
isthe path inside your package, NOT the path inside your user's site.

Installing modules with your component is optional. If this path does not exist no module will
beinstalled.

The path inside your package where extraplugins are stored. Please remember that thisisthe path
inside your package, NOT the path inside your user's site.

Installing plugins with your component is optional. If this path does not exist no plugin will be
installed.

Is the schemaXmlPath class variable a relative path? If set to true the schemaXmlPath variable
contains a path relative to the component's back-end directory. If set to false the schemaXmlPath
variable contains an absolute filesystem path. Thisis used when installing / updating / removing
your database tables using the XML schemafiles.

The path where the schema XML files are stored. Its contents depend on the schemaX mlPathRel -
aive variable above

« true. schemaXmlPath contains a path relative to the component's back-end directory
« false. schemaXmilPath contains an absolute filesystem path
The minimum PHP version required to install this extension. If it's empty no minimum version

check will be performed. Y ou are advised to not set it to a version lower than what FOF requires
(5.3.3)

55

Component overview and reference

mini- The minimum Joomlal version required to install thisextension. If it'sempty no minimum version
mumJoomlavVer- check will be performed.

sion

maxi- The maximum Joomlal version this extension can be installed on. If it's empty no maximum
mumJoomlavVer- version check will be performed.

sion

isPaid Is this the paid version of the extension? This only determines which files / extensions will be

removed. Thisis strictly optional.

Asfor the methods you can consult the docblocks in FOFUTilsl nstal I script.

10.2. The database schema installer / updater / removal
class

Note

Available since FOF 2.3.0

One of the most important operationsin managing acomponent is being able to install, update and remove its database
schema. Normally you do that using the relevant sections in your extension's manifest file. The big problem with
this approach is that you are using the short-sighted code in Joomlal's own extensions installer. The Achilles heel in
Joomlal's code is that database installation and updates depend solely on the contents of the # _schemas table. If no
version is recorded there, Joomlal is using your installation SQL file. If it containsaversion it will try to run all SQL
scripts with a name which indicates a version later than the one recorded in the schemas table. This leaves a lot of
room for spectacular failuresin the following cases, which happen far more frequently than you'd imagine:

» The#__schemasentry isempty but (some of) the database tables already exist, for exampleisthe user istransferring
tables manually, upgrading from an earlier Joomla! version using athird party tool, a previous installation has gone
wrong etc

» The# _schemasentry isout of date, e.g. theinstaller timed out before updating it
e A previousinstallation resulted in a SQL error

In al of the above cases Joomlal will throw a SQL error and your clients will think that you are a moron who can't
eveninstall their own component's database properly. Well, it'stimeto claim your power over Joomlal thanksto FOF!

FOF 2.3.0 and later comes with the FOFDat abasel nst al | er class. Unlike Joomlal, it doesn't baseits actions on
unreliable version numbers. Instead, it will run SQL commands based on whether tables / fields exist, the reported
type of fields or the result of custom SQL commands. It goes even further than that by letting Y OU, the devel oper, to
chooseif the failure of executing aparticular SQL command should raise a blocking SQL error or be silently ignored.
Thisis database schema management on steroids.

The schemafilesare provided in XML format. Y ou only need one XML file per database technology. By default these
files are stored in the back-end of your component, under thesql / xm directory. Thisis something you can override
through the $conf i g array you pass to the class constructor. The recognised parameters are:

input The FOFInput object, used only when opt i on isnot specified to figure out which component we
arereferring to. You are advised to usethe dbi nst al | er _di r ect or y parameter instead.

db The database object used to execute the SQL commands. If none is specified the default sys-
tem-wide database object will be used.

56

Component overview and reference

option The name of the component, e.gcom f oobar . Thisisused to determine the default location of
the XML schemafilesif dbi nst al | er _di r ect ory isnot defined. If not specified it will be
read from the opt i on key of thei nput object.

dbinstaller_directoryThe absolute filesystem path where the XML schema files are located. If not specified we will
usethesql / xm directory at the back-end of the component.

dbinstaller_files A comma-separated list or array of the base names of the schema files we will be looking for.
The default value is: array(' mysqgl', 'nysqli', 'postgresql', 'sqlsrv',
"mesql ') Please note that the name of the file doesn't have to be the same as the database
technology you are using. See further below for the format of the SQL file.

The class provides two methods you can use anywhere in your component:
public function updateSchema()

It creates or updates the tables of your component in the database. Y ou are suggested to call thisin two places: in your
installation script and in the main back-end page of your component. The latter placeis not very obvious, but it allows
your component to update its tables even without going through the installer. Y ou will thank yourself for doing that
when an installation fails due to a timeout error (resulting in an inconsistency between schema and code) and when
you pull a Git repository on atest server. No need to run SQL commands manually, just visit your component's back-
end page and presto! The database schema is updated. Y ou're welcome.

public function renpoveSchema()

It removes (drops) the tables of your component. Y ou are recommended to only use it in the uninstallation script of
your component. Beware! It really doeswhat it says on the tin. It will remove all database tables you mention in your
XML schemafile without any further warning. One line and the data dies, permanently.

Format of the XML schema files

<?xm version="1. 0" encodi ng="UTF-8"?>

<schena>
<l-- Metadata -->
<net a>
<l-- Supported driver types -->
<drivers>

<driver>nysql </driver>
<driver>nysqli</driver>
</drivers>

</ net a>

<l-- SQL commands to run on installation and update -->

<sql >
<I-- Create the #__foobar_profiles table if it's mssing -->
<action table="#__foobar_profiles" canfail="0">

<condition type="m ssing" value="" />
<quer y><![CDATA[
CREATE TABLE “#__foobar_profiles™ (
“foobar_profile_id int(10) unsigned NOT NULL AUTO_| NCREMENT,
“description’ varchar(255) NOT NULL,
“parans’ | ongtext,
PRI MARY KEY ("id")
) DEFAULT CHARACTER SET utf8;
11 ></ query>

57

Component overview and reference

</ action>
<action table="#__foobar_profiles" canfail="0">
<condition type="m ssing" val ue="parans" />
<quer y><![CDATA[
ALTER TABLE “#_foobar_profiles’ ADD "parans” |ongtext AFTER "description;
11 ></ query>
</ action>
</sql >
</ schema>

Asyou can see the file has the root element <schema> and consists of two sections.
The <net a> section

This section has a lone element, <dr i ver s>, which tells FOF which database technologies this XML schema file
appliesto. Put one driver namein each <dr i ver > child element. The driver names recognised are those that Joomlal
supports. By the latest count they are: mysgl, mysqli, postgresql, sglsrv, sglazure

Warning

Joomlal seems to only be tested properly against the mysqgl and mysgli drivers. We have been observing
inconsistent behaviour with the other drivers. You are advised AGAINST supporting these database tech-
nologies unless you enjoy receiving bug reports which you can't fix because the problem is in Joomlal, not
your code.

The <sgl > section

Thisiswhere all the action takes place. And that's why you have one or more<act i on> tags. Each <act i on> tag
defines SQL commands which should run when one or more conditions are met. Each tag has the following attributes:

table REQUIRED. Thetable this action operateson, e.g. # f oobar _cat egori es

canfail (optional) If it's set to O (default) if any SQL command in this action tag fails the error will bubble up
and throw a system error, preventing further execution. If it's set to 1 al SQL errors are ignored. This
setting can be overridden in each <quer y> tag.

Let'sstart with the conditions. They are defined by oneor more<condi t i on> tags. All <condi t i on> tagsaccept
theoper at or attribute which can have one of the following values:

and (default) This condition must be true

not This condition must be false

or Either this condition or its previous conditions must be true

nor Either this condition must be false or its previous conditions must be true
xor Either this condition or its previous conditions must be true, but not both

maybe Equivalentto"or"
Any other valueistreated as"and". Asyou may have noticed thisis straightforward Boolean algebra.
Thekind of check performed by a<condi t i on> tag isdetermined by itst ype attribute:

missing Checks if atable or afield of the table is missing. This depends on the val ue of the value attribute
of thetag:

58

Component overview and reference

type

equals

true

« If it'sempty FOF will check if the table defined by thet abl e attribute of the <act i on> tag exists.

 If it's not empty FOF will check if the field whose name you've put in the val ue attribute existsin
the table defined by thet abl e attribute of the<act i on> tag.

Thisisuseful to install tablesif they are missing or add missing fields to tables.

FOF checks if the type of a database field matches what you expect. The field will be searched in the
t abl e attribute of the <act i on> tag. It requires two attributes:

¢ val ue. The name of thefield.

« col t ype. The expected field type (case insensitive). Please note that this expects the full field type
definition, e.g. "VARCHAR(255) NULL" and NOT just "VARCHAR". Thisisalimitation of Joomlal's
database drivers.

FOF checkstheresult of a SQL query against theval ue attribute. In this case the content of the <con-
di ti on> tag givesthe SQL query to execute. For example:

<action table="#__admi ntool s_profiles" canfail="1">
<condi tion type="equal s" operator="not" val ue="1"><![CDATA|
SELECT COUNT(*) FROM "#_ admintools profiles WHERE "id" = 1;
]1></condition>

<query canfail ="1"><![CDATA[
I NSERT | GNORE | NTO "#__admintools_profiles’
(7id, description’, “configuration, “filters') VALUES
(1, Default PHP Change Scanner Profile','',"'");
11></query>
</ action>

In this case we are checking if the COUNT query returns "1". If not (due to the "not" operator) we will
run the INSERT IGNORE query.

Alwaysreturnstrue. Useful to runindex creation asindices cannot bereliably detected acrossall database
types (again, alimitation of Joomlal's database drivers...).

Next up you have one or more <quer y> tags. When the conditions are met they will al execute. The only attribute
you can haveiscanf ai | andit'soptional. If you skip it FOF will usethecanf ai | attribute of the<act i on> tag.

Asyou seethisfeatureis extremely simple and extremely powerful. If you useit wisely it will make your component's
database installation and maintenance seem to take place magicaly!

10.3. The update model helper

Note

Available since FOF 2.3.0

Joomlal comeswith an extensions updater feature. That said, its API ishard to use and leads to alot of code repetition.
Even worse, trying to use the support for commercial extensions is even worse. This is why FOF comes with the
FOFUt i | sUpdat e model class.

This class is not designed to be used on its own. You will need to create a Model in your extension extending from
this class. For example:

59

Component overview and reference

cl ass Foobar Mbdel Updat es extends FOFUt il sUpdate {}

Asisit won't help you much. At the very least you have to tell it which component this model refersto. You can do
S0 in your constructor. For example:

cl ass Foobar Mbdel Updat es extends FOFU il sUpdate {
public function __construct($config = array())
{

$confi g[' updat e_conponent'] = 'com foobar';

parent:: construct ($config);

}
}

Y ou can now get the updates to your component by doing

$updat el nf o = FOFMbdel : : get Tnpl nst ance(' Updat es', ' Foobar Mbdel ') - >get Updat es() ;
Thiswill return an array with the following keys:

hasUpdate Boolean. Trueif thereis an updated version available.

version String. The version number of the updated version available.

infoURL String. The optional information URL as found in the extension's update XML stream.

If you want to find out the current version of your extension you can do:

$current Versi on = FOFMbdel : : get Tnpl nst ance(' Updat es', ' Foobar Mbdel ') - >get Ver si on();
And now you have all the update information you might need.

In order to modify the update site and/or use the Joomlal 3.2 or later support for paid extensions you need to first
define afew thingsin your constructor:

cl ass Foobar Mbdel Updat es extends FOFU il sUpdate {

public function _ construct($config = array())

{
$confi g[' update_conponent'] = 'com foobar';
$confi g[' update_sitename'] = 'Foobar updates';
$config['update site'] = 'http://ww. exanpl e. conf updat es/ com f oobar. xm ' ;
$config[' update_extraquery'] = 'authorisation=nySuper Secret Code';
parent::__construct ($config);

}

}

The parameters you are setting are:

update sitename The name of the update site, as stored in Joomlal's# _update _sites table and used... nowhere at
al (typical Joomla)!

update site The URL to the update XML file for this extension

60

Component overview and reference

update_extraquery Something to be appended to the download URL. Theideaisthat you'll be using thisto authenti-
cate your clientsto your site and allow them to download your commercial extension. It's agood
idea to never hardcode this parameter but read it from your component's configuration.

Then, somewhere in your component, you need to run:
$current Versi on = FOFMbdel : : get Tnpl nst ance(' Updat es', ' Foobar Mbdel ') ->refreshUpdateSite();

It'sagood ideato put that in your component's control panel controller, in the onBeforeBrowse() method.

61

Chapter 3. Features reference
1. Configuring MVC

All MV C and associated classes in FOF (Dispatcher, Controller, Model, View, Table, Toolbar) come with a default
behavior, for example where to look for model files, how to handle request data and so on. While thisis fine most of
the times —as long as you follow FOF' s conventions— this is not always desirable.

For example, if you are building a CCK (something like K2) you may want to look for view templates in a non-
standard directory in order to support aternative “themes’. Or, maybe, if you're building a contact component you
only want to expose the add view to your front-end users so that they can file a contact request but not view other
people's contact requests. Y ou get the idea.

The traditional approach to development prescribes overriding classes, even to the extent of copying and pasting
code. If you've ever attended one of my presentations you've probably figured that | consider copying and pasting
code a mortal sin. You may have also figured that, like al developers, | am lazy and dislike writing lots of code.
Naturally, FOF being a RAD tool it provides an elegant solution to this problem. The $conf i g array and its sibling,
thef of . xml file.

1.1. The $config array

Y ou may have observed that FOF' s MV C classes can be passed an optional array parameter $conf i g. Thisisahash
array with configuration options. It is being passed from the Dispatcher to the Controller and from there to the Model,
View and Table classes. Essentidly, this is your view (MVC triad) configuration. Setting its options allows you to
modify FOF sinternal workings without writing code.

The various possible settings are explained in The configuration settings section below.

1.2. The fof.xml file

The $confi g array is a great idea but has a major drawback: you have to create one or several .php files with
specialized classes to use it. Remember the FOF promise about not having to write code unless absol utely necessary?
Y ep, this doesn't stick very well with that promise. Sothef of . xmi filewasbornin FOF 2.1.

Thef of . xm fileisasimple XML file placed inside your component's back-end directory, e.g. adni ni st r a-
tor/ com exanpl e/ f of . xm . It contains configuration overrides for the front-end, back-end and CLI parts of
your FOF component.

A sample fof.xml file

<?xm version="1.0" encodi ng="UTF-8""?>

<f of >
<l-- Conmon settings -->
<conmon>

<l-- Table options common to all tables -->
<tabl e nane="*">
<field name="1 ocked_by" >checked_out </ fi el d>
<field nane="I| ocked_on">checked out tine</field>
<relation type="children" nane="itens" />
<relation type="multiple" nane="transactions" |ocal Key="foobar_order _id"
our Pi vot Key="f oobar _order _i d* theirPivot Key="f oobar_transaction_id"
r enot eKey="f oobar _t ransacti on_i d"

62

Features reference

pi vot Tabl e="#__f oobar _orders_transacti ons” defaul t="true"
</t abl e>
<l-- Table options for a specific table -->

/>

<t abl e name="itent>
<fi el d name="enabl ed" >publ i shed</fi el d>

</t abl e>
</ common>
<l-- Conponent back-end options -->
<backend>
<l-- Dispatcher options -->
<di spat cher >
<option nane="defaul t_vi ew'>i tens</option>
</ di spat cher >
</ backend>
<l-- Conponent front-end options -->
<front end>
<l-- Dispatcher options -->
<di spat cher >
<option nane="defaul t_vi ew'>i t enx/ opti on>
</ di spat cher >

<l-- Opt

ions common for all views -->

<vi ew nane="*">

<l-- Per-task ACL settings. The star task sets the default ACL privileges for
<acl >
<task nanme="*">fal se</task>
</ acl >
</ vi ew>

<vi ew nane="itent>

<l--

Task mapping -->

<t askmap>

<task nanme="1i st">browse</t ask>

</taskmap>

<l--
<acl

Per-task ACL settings. An enpty string renoves ACL checks. -->
>
<l-- Everyone, including guests, can access dosonething -->
<t ask name="dosonet hi ng" ></t ask>
<I-- Only people with the core. manage privil ege can access the sonet hi ngel
<t ask name="sonet hi ngel se">cor e. manage</t ask>

</ acl >

<l--

Configuration options for the nodel and view -->

<confi g>

<opti on nane="behaviors">filter, access</option>

</ config>

</ vi ew>
</ frontend>
</ fof>

Thef of . xm filehasan <f of > root element. Insideit you can have zero or onetagscalled <f r ont end>, <back-

end> and <cl i > which configure FOF for front-end, back-end and CLI| access respectively. You may aso have
atag named <common> which defines settings applicable for any mode of access. These common settings will be
overridden by the corresponding settings defined in the <f r ont end>, <backend> and <cl i >. Please note that the
CLI isyet another special case: it will mix the common, back-end and CLI settings to derive the final configuration.

63

Features reference

In the other two cases (front- or back-end access) only the common and the configuration for this specific mode of
access will be used.

1.2.1. Dispatcher settings

Y ou can configure the way the Dispatcher works using the <di spat cher > tag. Inside it you can have one or more
<opt i on> tags. The name attribute defines the name of the configuration variable to set, while the tag's content
defines the value of this configuration variable.

The available variables are:

default_view Defines the default view to show if none is defined in the input data. By default thisis cpanel. In
the example above we set it to items in the back-end and item in the front-end.

1.2.2. Table settings

The table settings allow you to set up table options, in case you do not wish to use the default conventions of FOF.
Y ou define the tabl e the options apply to using the name attribute of the view tag. Please note that thisisthe name used
in the class, not in the database. So, if you have a database table named # _example_items and your class is named
Exanpl eTabl el t emyou must usenane="it enf inthef of . xm file.

The settings of each table are isolated from the settings of every other table, with one notable exception: the star table,
i.e.name="*".Thisisaplaceholder table that defines the default settings. These settings are applied to al tables. If
you also have atable tag for a view, the default settings (from the star table) and the settings for the particular table
are merged together. This appliesto all settings described below.

Field map settings

Thefield map settings allow you to map specific magic field namesto your table's fields, in case you do not use FOF's
contentions. It works the same way as adding setting the _col unmAl i as array in your specialized Table class.

Thefield map isenclosed insidethe <t abl e> tagitself. It consistsof one or more<f i el d> tags. The name attribute
defines the name of the magic (FOF convention) field to map, whereas the content of the tag defines the name of the
field in your database table.

Relation settings

Note
Available since FOF 2.2.0
The relation settings allow you to define the table relations used by the ORM-like feature introduced in FOF 2.2.0.

Oneor more<r el at i on> fields are enclosed inside the <t abl e> tag itself. The attributes available are:

type Oneof parent,chil d,children,nul tipl e and determines the relation type
name How this relation will be known to FOFTable
localKey The key in our table which holds the foreign key value. For themul t i pl e (n:n) relation thisis

the value of the ourPivotKey field in the pivotTable. For other relations it isthe value held by the
foreign table's remoteK ey field.

remoteKey The key in the foreign table which holds the foreign key value. For thenul t i pl e (n:n) relation
thisisthe value of thetheirPivotKey field in the pivotTable. For other relationsit isforeign table's
remoteK ey field which must match the value of our localKey to satisfy the relationship.

Features reference

ourPivotK ey Only valid for mul t i pl e (n:n) relations. The field name in the pivotTable which must have the
same value as our localK ey to satisfy the relation.

theirPivotKey Only valid for mul t i pl e (n:n) relations. The field name in the pivotTable which must have the
same value as the foreign table's remoteK ey to satisfy the relation.

pivotTable Only valid for mul t i pl e (n:n) relations. The name of the pivot (a.k.a. "glue" or "map") table
which maps our table'srecordswith theforeigntable'srecords, e.g. # foobar_articles comments

tableClass The FOFTable class name of the foreign table, e.g. FoobarTableltems. Thisis not required if re-
moteKey and the table class follow the FOF naming conventions, i.e. foobar_item_id is under-
stood to belong to # _foobar_items which maps to the FOFTable class FoobarTableltems. The
table class doesn't need to exist (you don't need to specialise FOFTable to define arelation). If the
classis not found a properly configured FOFTable object is created automatically.

default 0 or 1 (or yes/no, or true/false). If you have multiple relations of the same type in atable, one
of them can be set up as the default. If you don't specify a relation name when calling a method
to retrieve related item(s) FOF will aways the default relation. If you set up multiple default
relations of the sametype only the LAST relation will become the default. Y ou are advised not to
rely on default relations and name them explicitly in your code to avoid "interesting" bugs when
refactoring your code a few weeks (or, worse, months) down the line.

1.2.3. View settings

There are several optionsthat are applied per view. In the context of thef of . xm file, a“view” actually refersto an
MV C triad, not just the View part of the triad. In so many words, the options affect the Controller, Model and View
used to render this particular component view. Y ou define the view the options apply to using the name attribute of
the view tag.

The settings of each view are isolated from the settings of every other view, with one notable exception: the star view,
i.e.nanme="*", Thisisaplaceholder view that defines the default settings. These settings are applied to al views. If
you also have aview tag for aview, the default settings (from the star view) and the settings for the particular view
are merged together. This appliesto all settings described below.

Task map settings

The task map settings allow you to map specific tasks to specific Controller methods. Other frameworks would call
thisthe “routing” feature. It works the same way as adding running registerTask in your speciaized Controller class.

Thetask map isenclosed inside asingle <t asknap> tag. Y ou can have exactly zero or one <t askmap> tagsinside
each view tag.

Inside the <t askmap> tag you can have one or more <t ask> tags. The name attribute defines the name of the task
to map, whereas the content of the tag defines the controller’ s method which will be called for this task.

ACL settings

The ACL settings can be used to override or fine-tune the access control for each task of the particular view. Even
though FOF comes with default ACL mappings for its basic tasks, these are not always sufficient or appropriate for
all situations. Normally thisis achieved by overriding the onBefore methods in the Controller, e.g. onBef or eSave
to set up the ACL checks for the save task. Y ou can use the ACL mappingsinthef of . xm instead of such checks.
You can even use the ACL mapping inf of . xm for custom tasks for which no onBefore method exists.

The ACL settings are enclosed inside asingle <acl > tag. You can have exactly zero or one <acl > tagsinside each
view tag.

65

Features reference

Inside the <acl > tag you can have one or more <t ask> tags. The nane attribute defines the name of the task to
apply the access control, whereas the content of the tag defines the Joomlal ACL privilege required to accessthistask.
Y ou can use any core ACL privilege or any custom ACL privilege defined in your component'saccess. xm file. If
you |leave the content blank then no ACL check is performed (the task is always accessible by all users). If you usethe
specia valuef al se then the ACL privilege is aways going to fail, i.e. the task will not be accessible by any user.

Option settings

The configuration options of views and models can be modified directly from the view definition of f of . xm . The
configuration settings are enclosed inside a single <conf i g> tag. Inside it you can have one or more <opti on>
tags. Each tag is equivalent to passing a value in the $conf i g array. The nane attribute defines the name of the
configuration setting you want to modify. The content of the tag is the value of this setting. See the Configuration
settings section below for more information on what each setting is supposed to do.

1.3. Configuration settings

The following settings can be used either in the $config array passed to a Dispatcher, Controller, Model or View class
orinthef of . xm file's<opti on>tagsinsidethe <vi ew> tags.

autoRouting A bit mask which defines the automatic URL routing of redirections.
A value of 1 means that front-end redirections will be put through Joomlal’sJRout e: : ().
A value of 2 means that back-end redirections will be put through Joomlal’sJRout e:: ().
Y ou can combine multiple values by adding them together.

asset_key The key to be used for ACL assets. This is typicaly in the form conponent .vi ew, eg.
com exanpl e. i t emThisisonly used for per-item ACL privileges. If you do not specify an
asset key, the default conponent .vi ew convention will be used instead.

base path The base path of the component.
* In$confi g: Specify the absolute path.
e Infof . xm : Specify apath relative to the site’sroot.
behaviors Add model behaviours. See the FOFModel documentation for more information on behaviours.
e In$confi g: Anarray containing the names of model behavioursto add
e Infof.xm : A commaseparated list with the names of model behavioursto add
cacheableTasks A comma separated list of tasks which support Joomlal’ s caching.

cid Define a comma separated list of item IDsto limit the view on. Normally thisis empty. Only use
when you want to limit aview to very specific items. Only valid in the f of . xm file.

csrf_protection Should we be doing atoken check for the tasks of this view? The possible values are:
¢ 0- no token checks are performed
¢ 1 - token checks are always performed

» 2 - token checks are always performed in the back-end and in the front-end, but only when the
request format isht M (default setting)

« 3 - token checks are performer only in the back-end

66

Features reference

default_task

defaultPageTitle

event_after_delete

event_after_save

The task to execute if noneis defined. The default valueisdi spl ay.

Only taken into account when setFrontendPageTitle is also enabled. Thisisthe trandlation key of
the page'stitlewhich will be used in the front-end. Y ou can override this behaviour by specialising
the setPageTitle method of your FOFVi ewclass.

The content plugin event to trigger after deleting the data. Default: onCont ent Af t er Del et e

The content plugin event to trigger after saving the data. Default: onCont ent Af t er Save

event_before_deleteThe content plugin event to trigger before deleting the data. Default: onCont ent Bef or e-

event_before save

Del et e

The content plugin event to trigger before saving the data. Default: onCont ent Bef or eSave

event_change_state The content plugin event to trigger after changing the published state of the data. Default: on-

event_clean cache

helper_path

id

ignore_request

layout

model_path

model_prefix

modelName

searchpath

Cont ent ChangeSt at e
The content plugin event to trigger when cleaning cache. There is no default value.

The path where the View will be looking for helper classes. By default it's the helpers directory
inside your component's directory.

* In$confi g: Specify an absolute path.
e Inf of . xm : Specify a path relative to the component's directory.

Define an item ID to limit the view on. Normally thisis empty. Only use when you want to limit
aview to onesingleitem. Only valid inthef of . xm file.

Setto1topreventtheModel'spopul at eSt at e() method from running. By default the method
isempty and does nothing, asthe Model is supposed to be decoupled from the request information,
having the Controller push state variablesto it.

The default layout to use for this view. Thisis normally determined automatically based on the
task currently being executed.

The path where the Controller will be looking for Model class files. By default it's the models
directory of the component's directory.

* In$confi g: Specify an absolute path.
e Inf of . xm : Specify apath relative to the component's directory.

The naming prefix for the Model to be loaded by the Controller. The default option is Conpo-
nent nanmreModel where Conponent nane is the name of the component without the com_
prefix.

The name of the Model class to load. Automatically defined based on the component and view
names.

The path where Controller classes will be searched for. By default it'sthecont r ol | er s direc-
tory inside your component's directory.

* In$confi g: Specify the absolute path.

e Inf of . xm : Specify a path relative to the component's root directory.

67

Features reference

setFrontend-
PageTitle

table_path

table

tbl

thl_key

template_path

use table cache

view_path

viewName

When enabled, FOF will set the page title and metadata in the front-end. You can enable this
option by settingitto 1, yes, t r ue or on. When this setting is not set, the default behaviour of
Joomlal isto set the page title to the name of the currently active menu item. The default Joomlal
behaviour ignores the Include Site Name in Page Titles setting in the site's Global Configuration
(it'saJoomlal bug), but the code in FOF which runs when this setting is enabled does honour that
Global Configuration setting.

The path where the Model will be looking for table classes. By default it's the tables directory
inside your component's directory.

* In $config: Specify an absolute path.

* Infof.xml: Specify a path relative to the component's directory.

Set the name of the table class the Model will use. Please note that the the component name is
added to this name automatically. For example, given a component com exanpl e and atable

setting of f oobar the actual table class which will be used will be Exanpl eTabl eFoobar .

The name of the database table to use in thetable class of thisview. Itisintheformat of # _table-
name, eg. # _example_items

The name of the key field of the database table to use in the table class of thisview. It isin the
format of component_view_id, e.g. example_item_id.

The path where the View will belooking for view template (.php) or form (.xml) files. By default
it'sthet npl directory inside the current view's directory.

e In$confi g: Specify an absolute path.

e Inf of . xm : Specify apath relative to the component's directory.

By default FOF caches the names of the tables in the database and their field definitions in the
file JPATH _CACHE/ f of / cache. php, where JPATH_CACHE is usually the cache directory
in the front- or back-end of your site respectively. If you've set Debug Syst emto Yes inyour
site's Global Configuration then by default the cache is not used.

Y ou can override this behaviour per view / for all views of acomponent using this parameter. Set
to 0 to force the cache to never be used or set it to 1 to force the cache to always be used (even
when your site isin debug mode).

The path where the Controller will be looking for View class files. By default it's the vi ews
directory inside your component's directory.

* In$confi g: Specify an absolute path.
e Inf of . xm : Specify apath relative to the component's directory.

The name of the View class to load. Automatically defined based on the component and view
names.

2. XML Forms

Traditionally, creating view templates involves a .php file where PHP and HTML code are intermixed to create the
appropriate representation of the data to be served to a web browser. While this gives maximum flexibility to the
developer it isalso adrag, requiring you to write alot of repetitive code.

68

Features reference

Joomlal 1.6 and later is providing a solution to this problem, at least for edit views: JForm. With it it's possible to
create an XML file which defines the controls of the form and have JForm render it asHTML.

Pros:
e Theview templates are easier to read

* The HTML generation is abstracted, making it easier to upgrade to newer versions of Joomlal using a different
HTML structure

Cons:
* You need to change your Controllers, Models and Views to cater for and display the forms
» They only apply to edit views

FOF takes this concept further with the FOFForm package. Not only can you create edit views, but you can also create
browse (records listing) and read (single record display) views out of XML forms. Moreover, the forms are handled
automatically by the FOF base MV C classes without requiring you to write any additional code. If you want you can
always combine a traditional .php view template with aform file for maximum customisation of your view.

2.1. Form types
2.1.1. The different form types

Asimplied above, there are three types of XML forms available in FOF: Browse, Read and Edit. Each one follows
dightly different conventions and is used in different tasks of each MV C triad. In this section we are going to present
what each of those types does and what is its structure.

There afew things you should know before we go into more details.

All formfilesare placed in your view'st npl directory, e.g. conponent s/ com exanpl e/ vi ews/i tenms/tm
pl .

All form files' names begin with f or m and end with . xm . Thisis required for Joomla! to distinguish them from
view metadata XML files. The middle part of their name follows the same convention as the regular view template
files, i.e. "default" for browse tasks, "form" for edit tasks and "item"” for read tasks.

For example, the browse form for com exanpl e's items view is located in conponent s/ com exanpl e/
views/itens/tnpl/formdefault.xm whereasthe form for editing a single item is located in conpo-
nent s/ com exanpl e/ views/item tnpl/form form xm

2.1.2. Browse forms

Browse forms are used to create arecordslist view. They are typically used in the back-end to allow the user to view
and manipulate alist of records. A typical browse form looks like this:

<?xm version="1.0" encodi ng="utf-8"?>
<form

| essfil es="medi a://com todo/css/backend. | ess|| medi a://com t odo/ css/ backend. css”

t ype="br owse"

show_header ="1"

show filters="1"

show_pagi nati on="1"

nor ows_pl acehol der =" COM_TODO_COVMON_NORECORDS"

<header set >

69

Features reference

<header name="ordering" type="ordering" sortable="true" tdw dth="1% />

<header name="todo_item.id" type="rowsel ect” tdw dth="20" />

<header name="title" type="fiel dsearchabl e" sortabl e="true"
buttons="yes" buttonclass="btn"

/>

<header name="due" type="field" sortable="true" tdw dth="12% />
<header name="enabl ed" type="published" sortable="true" tdw dth="8% />
</ header set >

<fiel dset

nane="itens">

<field nane="ordering" type="ordering" |abelclass="order"/>

<field nane="todo_item.id" type="selectrow'/>

<field nane="title" type="text"
show | i nk="true"
url ="i ndex. php?opti on=com t odo&anp; vi ew=i t em&anp; i d=[| TEM 1 D] "
cl ass="t odoi t enf
enpty_replacement="(no title)"

/>

<field nane="due" type="duedate" />

<field nane="enabl ed" type="published"/>
</fieldset>

</fornp

You MUST have exactly one <header set > and one <f i el dset > tag. The nane attribute of the<f i el dset >
MUST awaysbei t ens. Extratagsand/or <f i el dset > tagswith different name attributes (or no name attributes)

will beignored.

2.1.2.1. Form attributes

The enclosing <f or n» tag MUST have the following attributes:

type It must be aways set to br owse for FOF to recognise this as a Browse form

The enclosing <form> tag MAY have one or more of the following attributes:

lessfiles

cssfiles

FOF alows you to include LESSfiles to customise the styling of your components. Y ou can give
acomma separated list of LESSfiles identifiers (see the "Mediafilesidentifiers" section below)
to be loaded by FOF. For example nedi a: / / com exanpl e/ | ess/ backend. | ess

Compiled LESS files are cached inthenedi a/ | i b_f of / conpi | ed di rect ory for effi-
ciency reasons, using a mangled filename for privacy/security reasons. They are not written in
your site's cache or adminstrator/cache directory as these directories are not supposed to be web-
accessible, whereas the compiled CSSfiles, by definition, need to be web-accessible.

Since LESS files require a lot of memory and time to compile you can also provide an
alternative pre-compiled CSS file, separated from your LESS file with two bars. For ex-
ample: medi a: // com exanpl e/ | ess/ backend. | ess| | medi a: // com exanpl e/
css/ backend. css

This works in the same manner as the lessfiles directive, but you are only supposed to speci-
fy standard CSS files. The CSS files are defined using identifiers, too. For exanpl e: ne-
di a: // com exanpl e/ css/ backend. css

70

Features reference

Please note that mediafile overrides rules are in effect for these CSSfiles.

jsfiles Works the same way as cssfiles, but it's used to load Javascript files. The Javascript files are
defined using identifiers, too. For example: medi a: / / com exanpl e/ j s/ backend. j s

Please note that mediafile overridesrules are in effect for these Javascript files.

show_header Should we display the header section of the browse form? This is the place where the field titles
are displayed.
show_filters Should we show the filter section of the browse form? On Joomla! 2.5 thisis the area below the

header where the user can filter the display based on his own criteria. On Joomlal 3.0 and later
thisareais rendered in the sidebar, at the left hand side of the records list.

show_pagination Should we show the pagination results? That's the links to the first, second, third, ..., last page
and the drop-down for the number of items per page. It is displayed below the list of records.

norows_placeholder A trandlation key displayed instead of a records list when the current view contains no records,
e.g. thetable is empty or thefilters limit display to zero records.

2.1.3. Read forms

While browse views display alist of records, read forms will display just a single record. These are nowhere near as
powerful as hand-coded PHP-based view templates but can be used to get a quick single item output in a snatch when
prototyping a component or when your dataisreally smple. A typical read form looks like this:

<?xm version="1.0" encodi ng="utf-8"?>

<form
| essfiles="nedia://comtodo/css/frontend. | ess||nedia://comtodo/css/frontend. css"
type="read"

>

<fieldset nane="a_single_ itenf class="todo-item container formhorizontal ">
<field nane="title" type="text"

| abel =""
class="todo-title-field"
si ze="50"

/>

<field nane="due" type="duedate"
| abel =" COM_TODO_| TEMS_FI ELD_DUE"
| abel cl ass="t odo-fiel d"

si ze="20"
def aul t =" NOW
/>
<field nane="description" type="editor"
| abel =""
/>
</fieldset>

</fornp
You MUST have at least one<f i el dset > tag. The name attribute of the <f i el dset > isindifferent.
2.1.3.1. Form attributes

The enclosing <f or n» tag MUST have the following attributes:

71

Features reference

type It must be aways set tor ead for FOF to recognise this as a Read form
The enclosing <form> tag MAY have one or more of the following attributes:

lessfiles FOF alows you to include LESS files to customise the styling of your components. Y ou can give a
comma separated list of LESS files identifiers (see the "Mediafiles identifiers" section below) to be
loaded by FOF. For example: medi a: / / com exanpl e/ | ess/ backend. | ess

Compiled LESSfilesare cachedintherredi a/ | i b_f of / conpi | ed directory for efficiency rea-
sons, using amangled filenamefor privacy/security reasons. They are not writtenin your sitescache
or adm nstrat or/ cache directory as these directories are not supposed to be web-accessible,
whereas the compiled CSSfiles, by definition, need to be web-accessible.

Since LESS files require a lot of memory and time to compile you can aso provide an al-
ternative pre-compiled CSS file, separated from your LESS file with two bars. For exam-
plee nedia://com exanpl e/l ess/ backend. | ess| | nedi a: // com exanpl e/ css/
backend. css

cssfiles This works in the same manner as the | essfi |l es directive, but you are only supposed to
specify standard CSS files. The CSS files are defined using identifiers, too. For example: ne-
di a: // com exanpl e/ css/ backend. css

Please note that mediafile overrides rules are in effect for these CSSfiles.

jsfiles Works the same way as cssfi | es, but it's used to load Javascript files. The Javascript files are
defined using identifiers, too. For example: medi a: / / com exanpl e/ j s/ backend. j s

Please note that media file overrides rules are in effect for these Javascript files.

2.1.4. Edit forms

Edit forms are used to edit a single record. They are typically used in the back-end. If you want to use an Edit form
in the front-end you will need to specialise your Toolbar class to render a front-end toolbar in the edit task of this
specific view, otherwise the form will not be able to be submitted (unless you do other tricks, outside the scope of
this devel opers documentation).

An edit form looks like this:

<?xm version="1.0" encodi ng="utf-8"?>

<form
| essfil es="medi a://com todo/css/backend. | ess| | medi a: // com t odo/ css/ backend. css”
val i date="true"

<fi el dset nane="basi c_configuration”
| abel =" COM_TODO_| TEM5_GROUP_BASI C'
descri pti on="COM TODO | TEM5_GROUP_BASI C_DESC'
cl ass="span6"

<field nane="title" type="text"
cl ass="i nput box™"
| abel =" COM_TODO_| TEMS_FI ELD Tl TLE"
| abel cl ass="t odo-| abel todo-I| abel - main"
requi red="true"
si ze="50"
/>

72

Features reference

<field nane="due" type="cal endar"
cl ass="i nput box™"
| abel =" COM_TODO_| TEMS_FI ELD_DUE"
| abel cl ass="t odo-| abel "
requi red="true"
si ze="20"
def aul t =" NOW
/>
<field nane="enabl ed" type="list" |abel ="JSTATUS"
| abel cl ass="t odo- | abel "
descri ption="JFI ELD PUBLI SHED DESC' cl ass="i nput box"
filter="intval" size="1" default="1"

<option val ue="1">JPUBLI SHED</ opt i on>
<option val ue="0">JUNPUBLI SHED</ opti on>
</field>
</fieldset>
<fi el dset nane="descri ption_group”
| abel =" COM_TODO_| TEMS_GROUP_DESCRI PTI ON'
descri pti on="COM TODO | TEM5_GROUP_DESCRI PTI ON_DESC"
cl ass="span6"

>
<field nane="description" type="editor"
| abel =""
cl ass="i nput box™"
requi red="fal se”
filter="JConponent Hel per::filterText" buttons="true"
/>
</fieldset>
</fornmp

2.1.4.1. Form attributes
The enclosing <f or n» tag MAY have one or more of the following attributes:

lessfiles FOF allows you to include LESS files to customise the styling of your components. Y ou can give a
comma separated list of LESSfiles identifiers (seethe "Mediafilesidentifiers' section below) to be
loaded by FOF. For example: medi a: / / com exanpl e/ | ess/ backend. | ess

Compiled LESS files are cached in the nmedi a/l i b_f of / conpi | ed directory for efficiency
reasons, using a mangled filename for privacy/security reasons. They are not written in your site's
cache or adm nstrat or/ cache directory as these directories are not supposed to be web-ac-
cessible, whereas the compiled CSSfiles, by definition, need to be web-accessible.

Since LESS files require a lot of memory and time to compile you can also provide an al-
ternative pre-compiled CSS file, separated from your LESS file with two bars. For exam-
ple. medi a: // com exanpl e/ | ess/ backend. | ess| | medi a: // com exanpl e/ css/
backend. css

cssfiles This works in the same manner as the | essfi | es directive, but you are only supposed to
specify standard CSS files. The CSS files are defined using identifiers, too. For example: nme-
di a: // com exanpl e/ css/ backend. css

Please note that mediafile overrides rules are in effect for these CSSfiles.

73

Features reference

jsfiles Works the same way as cssfi | es, but it's used to load Javascript files. The Javascript files are
defined using identifiers, too. For example: nedi a: / / com exanpl e/ j s/ backend. j s

Please note that media file overridesrules are in effect for these Javascript files.

validation Setittot r ue to have Joomlal load its unobtrusive Javascript validation script. Please note that FOF
does perform some automatic, generic server-side validation checks where possible. We strongly
recommend you to implement more thorough, customised validation in your specialised Table class
and its check() method where possible, especialy in front-end facing MV C triads.

2.1.5. Formatting your forms

OK, granted, the automatically rendered formsare atimesaver but, by default, they ook terrible. Thisis quite expected.
It's like comparing a rug churned out by a mechanised production line (the automatically rendered form) and a hand-
stiched persian rug (the hand-coded PHP-based view template). The good newsisthat, unlike rugs, there's some room
of improvement with XML forms.

For starters, the<f i el dset >sof Edit and Read forms, aswell asthe fields themselves, can be assigned CSS classes
and | Dswhich can help you provide acustom style. Moreover, you can mix XML formsand PHP-based view templates
to further customise the display of your forms.

In this section we will cover both customisation methods. If this doesn't sound enough for your project you can always
use hand-coded PHP-based view templates, much like how you did since Joomlal 1.5.0. It'sup to you to decide which
method is best for your project!

2.1.5.1. Using Bootstrap-powered tabs

| mportant
Available since FOF 2.3.0.

This feature smply emits Bootstrap 2.x compatible HTML markup, therefore only works with Boot-
strap-powered templates. This means that you will need to be using Akeeba Strapper (Joomlal 2.5 and 3.x
are supported) or Joomlal 3.x with a Bootstrap-powered template.

If you have along form you may want to provide tabs to let the user access different sections of the form. In order to
do that, you first haveto set thet abbed attribute of your formtot r ue, yes, 1 or on. For example:

<?xm version="1.0" encodi ng="utf-8"?>
<form t abbed="1">

Eachfi el dset whichwill bepart of thetab set must includet ab- pane initscl ass attribute. Moreover, it MUST
have non-empty | abel and nane attributes. For example:

<fi el dset nane="basi c_confi guration"
| abel =" COM_FOOBAR _| TEMS_GROUP_BASI C"
cl ass="t ab- pane active another-cl ass"
>

Please note that exactly one of your f i el dset smust have act i ve added toitscl ass attribute. Thiswill be the
tab which will be open by default. If you forget to set an active tab the tab pane will render with no tab active by
default which is confusing for your users!

2.1.5.2. Assigning classes and IDs to <fieldset>s

Each fieldset of a Read and Edit form can have the following optional attributes:

74

Features reference

class One or more CSS classes to be applied to the generated <di v> element.
name Thevalue of thisattribute is applied to the id attribute of the generated <di v> element.

label Thevaue of thisattributeisrendered asalevel 3 heading (<h3>) element at thetop of the generated <di v>
element.

If you are using Joomlal 3 (which has Bootstrap by default) or Joomlal 2.5 together with the optional Akeeba Strapper
package (which back ports Bootstrap to Joomlal 2.5) you can use Bootstrap's classes to create visually interesting
interfaces. For example, usingcl ass="span6 pul | -1 ef t " will create a half-page-wide left floating sidebar out
of your field set.

2.1.5.3. Mixing XML forms with PHP-based view templates

Inside your .php view template file you can use $t hi s- >get Render edFor n() to return the XML form file
rendered asHTML. This allows you to customise the layout (e.g. adding information before/after the form) while still
using the XML file to render the actual form.

To use this approach, simply insert this code in your custom .php template file:

<?php

$vi ewTenpl at e = $t hi s- >get Render edForm() ;
echo $vi ewTenpl at e;

?>

2.2. Header fields type reference

2.2.1. How header fields work
A header field has two distinct functions:

 Itisused to render headersin list views which are used to label the columns of the display and optionally allow
you to sort the table by a specific field

* Itisusedto render filtering widgets (drop-down lists and search boxes). In Joomlal 2.5 you can only render filtering
widgets directly below a header field in a list table and you can only have up to as many filtering widgets as your
fields. In Joomla!l 3.x and above the filtering widgets are rendered either above the header fields (search boxes) orin
the left-hand column (drop-down lists). Asin Joomlal 3.x and above the filters are detached from the header fields
you can have as many filters as you want, even more than the number of fields you are displaying in thefilter list.

A leader field can render only a header, only afilter or both. Most of the header field types render both. Those whose
name starts with fi | t er will only render a filtering widget, but not a header field. As a result these header fields
will only work on Joomlal 3.x and later.

2.2.2. Common fields for all types

For al following fields you can set the following attributes:
* name The name of the header field. This has to match the table field name in the model.

If you want to create a header for a calculated field or for a column that doesn't correspond to atable field please
use a name that doesn't overlap with the name of a column in the table. If you want to list afield many times (e.g.
display arow selection checkbox and the record ID at the same time) you will have to use the same nane in both
headers, but use a different i d attribute.

75

Features reference

type The header type. See below for the available field types, as well as the options which can be specified in each
one of them.

label The language string which will be used for the label of the header; this is a language string that will be fed
to JText:: () for trandation.

id Thei d attribute for this header. Skip it to have FOF create one based on the field name.

If none is provided FOF will automaticaly create one using the convention
component_modelname_fieldname LABEL where component is the name of your component, modelname is
the name of your model (usually equals to the view name) and fieldname is the name of the field. For ex-
ample, for a component com_foobar, a view named items and a field named baz we get the language string
COM_FOOBAR_ITEMS BAZ LABEL.

tdwidth The width of this column in the list table. You can use percentile or pixel units, i.e. t dwi dt h="10%
ortdwi dt h="120px"

sortable Set to "true" if you want to be able to sort the table by thisfield.
filterclass The CSS class for the filtering widget

onchange The Javascript code to be executed when the filtering widget's value is modified

2.2.2.1. Additional attributes for search box filtering widgets

The following attributes apply to all header fields rendering a search box filtering widget:

sear chfieldname The name of the field that will be searchable. If omitted it will be the same asthe nane attribute.

placeholder The placeholder text when the field is empty. Useful to explain what kind of information this search
field is supposed to be searching in.

size The size (in characters) of the search box
maxlength The maximum length in characters which is allowed to be entered in the field

buttons Set to true (or skip) to show Go and Reset buttons next to the text field. Set to "false” to hide those buttons.
The user can still press Enter to submit the form.

buttonclass The CSS class of the Go and Reset buttons

2.2.2.2. Additional attributes for drop-down list filtering widgets

This element has <opt i on> sub-elements defining the available options. Please consult Joomlal'sown | i st field
type for more information.

Since FOF 2.1.0 we allow you to use a programmeatically generated data source instead of the hard-coded <opt i on>
tags. This can be used when you need your code to generate options based on some configuration data, data from the
database and so on. Y ou do that by supplying the name of a PHP class and a static method on that class which returns
the data. The data must be returned in an indexed array where the key is the key of the drop-down list item and the
valueisthe description (translation key or string). Y ou may also use asimple array containing indexed arrays by using
thesour ce_key and sour ce_val ue attributes.

The following additional attributes apply to all header fields rendering a drop-down list filtering widget.

source file (optional) The PHP file which provides the class and method. It is given in the pseu-
do-URL formate.g.admi n: / / conponent s/ com f oobar / hel per s/ mydat a. phporsite:// conpo-

76

Features reference

nent s/ com f oobar/ hel per s/ nydat a. php for afilerelative to the administrator or site root directory re-
spectively.

» source_class (required) The name of the PHP classto use, e.g. Foobar Hel per Mydat a
» source_method (required) The static method of the PHP class to use, e.g. get SoneFoobar Dat a

» source format (optional) The format of the returned data of the static method. Set to opt i onsobj ect if the
method returns a pre-generated options object.

» source key (optional) If you are using an array of indexed arrays, thisisthe key of the indexed array that contains
the key of the drop-down option.

» source key (optional) If you are using an array of indexed arrays, thisisthe key of the indexed array that contains
the value (description) of the drop-down option.

» source _tranglate (optional) By default all values are being trandlated, i.e. fed through JText:: (). If you don't want
that, set this attribute to "false".

2.2.3. Field Types

2.2.3.1. accesslevel
Displays a header field with a viewing access level drop-down filtering widget.

There are no additional attributes to set.

2.2.3.2. field

Displays a header field, without any filtering widget.

There are no additional attributes to set.

2.2.3.3. fielddate

Displays a header field with a date selection search box filtering widget.

The additional attributes you can set are:

» readonly Set to true to make the search box read only

« disabled Set to true to disable the search box (it displays but you can't click on it)

« filter Skip to show the date/time as entered. Set to SERVER_UTC to convert a date to UTC based on the server
timezone. Set to USER_UTC to convert a date to UTC based on the user timezone.

2.2.3.4. fieldsearchable

Displays a header field with a search box filtering widget.
There are no additional attributes to set.

2.2.3.5. fieldselectable

Displays a header field with a drop-down list filtering widget.

There are no additional attributes to set.

7

Features reference

2.2.3.6. fieldsql

Displaysaheader field with adrop-down list filtering widget. The source of thefilter values comesfrom an SQL query.
The additional attributes are:

» key field thetable field to use as key

 value field thetable field to display as text

e query the actual SQL query to run

We recommend avoiding this field type as the query is specific to a particular database server technology. Using the
nodel orfi el dsel ect abl e typewith a programmatic data source is strongly encouraged.

2.2.3.7. filterdate

This is the same as fielddate but no header is rendered. Only the filtering widget is rendered. This header field type
only works on Joomlal 3.x and later.

2.2.3.8. filtersearchable

This is the same as fieldsearchable but no header is rendered. Only the filtering widget is rendered. This header field
type only works on Joomlal 3.x and later.

2.2.3.9. filterselectable

This is the same as fieldsel ectable but no header is rendered. Only the filtering widget is rendered. This header field
type only works on Joomlal 3.x and later.

2.2.3.10. filtersql

This is the same as fieldsgl but no header is rendered. Only the filtering widget is rendered. This header field type
only works on Joomlal 3.x and later.

The same warning applies to using thisfield type.

2.2.3.11. language

Displays a header field with a drop-down list containing the languages installed on your site.
The additional attributes are:

 client If setto"site" displaysalist of installed front-end languages. If set to "administrator” displaysalist of installed
back-end languages. Defaullt: site.

2.2.3.12. model

Similar to the fieldsel ectable header, but gets the options from a FOFModel descendant.

Y ou can set the following attributes on top of those of the 'fieldselectable’ field type's:

» model The name of the model to use, e.g. FoobarM odel Items

» key_field The name of the field in the model's results which is used as the key value of the drop-down

« value field The name of the field in the model's results which is used as the label of the drop-down

78

Features reference

« trandate Should the value field's value be passed through JText:: () before being displayed?
 apply_access Should we respect the view access level, if an accessfield is present in the model

» none The placeholder to be shown if the value is not found in the data returned by the model. This placeholder goes
through JText, so you can use alanguage string if you like.

In order to filter the model you can specify <st at e> sub-elementsin the format:

<state key="state_key">val ue</ st at e>

Where state key isthe key of a state variable and valueisits value. For instance, you could have something like:
<state key="foobar category id">123</state>

2.2.3.13. ordering

Displays a header field which allows reordering of your data.

On Joomlal 2.5 it displays the name of the field followed by a disk icon which saves the ordering.

On Joomla! 3.x and later it displays an "up and down triangl€" icon. When clicked the AJAX-powered reordering
handles in the list view become enabled.

There are no additional attributes.

2.2.3.14. published

Displays a header field and a drop-down filtering field for Published / Unpublished and related publishing options.
The additional attributes are:

» show_published Should we show the Published statusin the filter? Default: true

 show_unpublished Should we show the Unpublished status in the filter? Default: true

» show_archived Should we show the Archived status in the filter? Default: false

» show_trash Should we show the Trashed status in the filter? Default: false

show_all Should we show the All status in the filter? Default: false. You actually don't need this as no selection
resultsin all records, irrespective of their publish state, to be displayed.

2.2.3.15. rowselect

Displays a checkbox which, when clicked, automatically selects all the row selection checkboxesin the list.

There are no additional attributes.

2.3. Form fields type reference

2.3.1. Common fields for all types
For all following fields you can set the following attributes:

* name The name of the field. This has to match the table field name in the model.

79

Features reference

If you want to create a header for a calculated field or for a column that doesn't correspond to a table field please
use a name that doesn't overlap with the name of a column in the table. If you want to list a field many times (e.g.
display arow selection checkbox and the record ID at the same time) you will have to use the same nane in both
fields, but use adifferenti d attribute.

 type The field type. See below for the available field types, as well as the options which can be specified in each
one of them.

« label The language string which will be used for the label of the field; this is a language string that will be fed
to JText::_() for trandation. If you leave it empty FOF will automatically generate a language string using the
convention COVPONENTNAME_ VI EWNAMVE_FI ELDNAME_LABEL.

» id Thei d attribute for thisfield. Skip it to have FOF create one based on the field name.

If none is provided FOF will automaticaly create one using the convention
component_modelname_fieldname LABEL where component is the name of your component, modelname is
the name of your model (usually equals to the view name) and fieldname is the name of the field. For ex-
ample, for a component com_foobar, a view named items and a field named baz we get the language string
COM_FOOBAR_ITEMS BAZ_LABEL.

» emptylabel Setthisto 1if you intend to have afield without alabel. In this case you must NOT definethel abel
attribute.

 description The language string which will be used for the label of the field; this is alanguage string that will be
fed to JText::_() for trandation.

* tooltip The language string which will be used for the tooltip of the field; thisis alanguage string that will be fed
to JText:: () for trandation.

* required Setit to 1, yes or true to make this arequired field. If you use the form validation then the form cannot
be submitted unlessthisvalueisfilled in.

I mportant

The automatic label and description only apply if you are using Akeeba Strapper or if you
are using Joomla! 3.0 and later. If you are using FOF on plain old Joomlal 2.5 you must
providethel abel anddescri pti on attributes manually.

2.3.2. Field types

2.3.2.1. accesslevel

Thiswill display a select list with existing Joomlal Access Levels.
Y ou can set the following attributes:

 class CSS class (default)

2.3.2.2. button

Thiswill display an input button.

Y ou can set the following attributes:

» class CSS class (default)

80

Features reference

* icon Bootstrap icon to add to the button (default ™)

» onclick "onclick" attribute to add to the button (default ")

» url URL template for each element (use [I TEM:ID] as a placeholder for theitem id) (default ")
» htmlelement The HTML used tag, allowed: button, a (default 'button’)

* text Button text value; thisis alanguage string that will be fed to JText:: () for translation

2.3.2.3. cachehandler

Thiswill display a select list with available Joomlal cache handlers

Y ou can set the following attributes:

» class CSS class (default)

2.3.2.4. calendar

Thiswill display a calendar/date field.

Y ou can set the following attributes:

 class CSS class (default)

» format (defaults ‘%Y -%m-%d')

« filter can be one the following:
* SERVER_UTC convert adate to UTC based on the server timezone
¢ USER_UTC convert adate to UTC based on the user timezone

2.3.2.5. captcha

Thiswill display a captchainput.

Y ou can set the following attributes:

* plugin The name of the CAPTCHA plugin to use. Leave empty to use whatever is the default on in the Global
Configuration of the Joomla! site

2.3.2.6. checkbox
Thiswill display a single checkbox input.

Y ou can set the following attributes:

class CSSclass (default ")

value the input value

checked the default status for input

disabled Isthis adisabled form element?

81

Features reference

2.3.2.7. components

Thiswill display aselect with alist of installed Joomlal components

Y ou can set the following attributes:

class CSSclass (default ™)

client_ids comma separated list of applicable client ids (note: 0 = admin, 1 = site)
readonly isthisaread only field?

disabled Isthis a disabled form element?

multiple Should we allow multiple selections?

onchange onchange JavaScript event

2.3.2.8. editor

Thiswill display aWY SIWY G edit areafield for content creation and formatted HTML display.

Y ou can set the following attributes:

class CSSclass (default ™)

rows How many rows the generated <t ext ar ea> will have, typically used when Javascript is disabled on the
browser

cols How many columns the generated <t ext ar ea> will have, typically used when Javascript is disabled on the
browser

height The height of the editor (default: 250)

width The width of the editor (default: 100%)

asset_field The name of the asset_id field in the form (default: asset_id)
created_by field The name of the created by field in the form

asset_id The Joomlal asset ID for this record. Leave empty to let FOF use the value of the asset field defined by
asset field.

buttons Which buttons should we show (rendered by editor-xtd plugins)? Use O, false or no to show now buttons,
otherwise provide a comma separated list of button plugin names

hide Which buttons should we hide? Similar to above.

2.3.2.9. email

Thiswill display atext input which expects avalid e-mail address.

Y ou can set the following attributes:

class CSSclass (default ")

show_link if true put amailto: link around the address (default false)

82

Features reference

* size Size of the text input in characters

» maxlength Maximum length of the input in characters
* readonly Isthisaread only field?

+ disabled Isthisadisabled form element?

« onchange onchange Javascript event

2.3.2.10. groupedbutton
Thiswill display a group of button.
Y ou can set the following attributes:
 class CSS class (default)

This element supports sub-elements organised in <but t on> tags. For more information please consult the but t on
element.

2.3.2.11. groupedlist

Thiswill display a grouped drop down list.
Y ou can set the following attributes:

 class CSS class (default)

This element supports sub-elements organised in <gr oup> and <opt i on> tags. For moreinformation please consult
the documentation of Joomla!'s JFormFieldGroupedList element.

2.3.2.12. hidden
Thiswill display a hidden input.

You can set the common attributes. Moreover, to make sure this field is rendered properly, you MUST define the
attribute enpt yl abel =" 1" and NOT assign alabel attribute at all.

2.3.2.13. image

Thisisan diasfor the "media’ field type (see below).

2.3.2.14. imagelist

Thiswill display amedia selection field showing images from a specified folder.
Y ou can set the following attributes:

» classCSSclass

* directory folder to search theimagesin

» gstyleinline style

« width HTML width attribute

83

Features reference

height HTML height attribute

align HTML align attribute

rel HTML rel attribute

* titleimagetitle

filter The filtering string for filenames to show. Default: \ . png$|\. gi f$|\.j pg$|\. bmp$|\. i co9|
\.jpeg$|\. psd$|\.eps$

2.3.2.15. integer

Thiswill display atext input which expects avalid integer value.
Y ou can set the following attributes:

 class CSS class (default)

o first Starting number

* last Last number to show

 step Step for increasing the numbers

For example, when using first=10, last=20 and step=2 you get alist of 10, 12, 14, 16, 18, 20.
2.3.2.16. language

Thiswill display a select input of all available Joomla! languages
Y ou can set the following attributes:

 class CSS class (default)

« client Can take the values of 'site' or 'administrator’ to show the available languages for the front- and back-end
respectively.

2.3.2.17. list
Thiswill display a select input of generic options.

IMPORTANT The following attributes apply to all field types that present a drop-down list; they all descend from
thisfield type.

Y ou can set the following attributes:

» class CSS class (default)

» readonly Isthisaread-only field?

+ disabled Isthisadisabled form element?

multiple Should we allow multiple selections?

 onchange The onChange Javascript event

url URL template for each element (use [ITEM:ID] as a placeholder for theitem id)

Features reference

show_link if true, adds a link around each item based on the "url" attribute (default false)

This element has <opt i on> sub-elements defining the available options. Please consult Joomlal's own element of
the same type for more information.

Since FOF 2.1.0 we allow you to use a programmatically generated data source instead of the hard-coded <opt i on>
tags. This can be used when you need your code to generate options based on some configuration data, data from the
database and so on. Y ou do that by supplying the name of a PHP class and a static method on that class which returns
the data. The data must be returned in an indexed array where the key is the key of the drop-down list item and the
valueisthe description (translation key or string). Y ou may also use asimple array containing indexed arrays by using
thesour ce_key and sour ce_val ue attributes.

The relevant attributes are:

source file (optional) The PHP file which provides the class and method. It is given in the pseu-
do-URL formate.g.admni n: / / conponent s/ com f oobar / hel per s/ mydat a. phporsite:// conpo-
nent s/ com f oobar/ hel per s/ nydat a. php for afilerelative to the administrator or site root directory re-
spectively.

sour ce_class (required) The name of the PHP classto use, e.g. Foobar Hel per Mydat a
source_method (required) The static method of the PHP classto use, e.g. get SonreFoobar Dat a

source_format (optional) The format of the returned data of the static method. Set to opt i onsobj ect if the
method returns a pre-generated options object.

source_key (optional) If you are using an array of indexed arrays, thisisthe key of the indexed array that contains
the key of the drop-down option.

sour ce_translate (optional) By default all values are being trandated, i.e. fed through JText::_(). If you don't want
that, set this attribute to "false".

2.3.2.18. media

Thiswill display amedia selection field.

Y ou can set the following attributes:

class CSSclass

styleinline style

width HTML width attribute

height HTML height attribute

align HTML align attribute

rel HTML rel attribute

titleimagetitle

asset_field The name of the asset_id field in the form (default: asset_id)
created by field The name of the created by field in the form

asset_id The Joomla! asset ID for this record. Leave empty to let FOF use the value of the asset field defined by
asset_field.

85

Features reference

« link The link to a media management component to use. Skip this to use Joomlal's own com_media (strongly
recommended!)

» sSizeField sizein characters

« onchange The onChange Javascript event

 preview Should we show apreview of the selected mediafile?

e preview_width Maximum width of preview in pixels

e preview_height Maximum height of preview in pixels

« directory Directory to scan for images relative to site's root. Skip to use the site'simages directory.
2.3.2.19. model

Similar to the list field, but gets the options from a FOFModel descendant.

Y ou can set the following attributes on top of those of the 'list' field type's:

» model The name of the model to use, e.g. FoobarModel Items

» key_field The name of the field in the model's results which is used as the key value of the drop-down
« value field The name of the field in the model's results which is used as the label of the drop-down
« trandate Should the value field's value be passed through JText:: () before being displayed?
 apply_access Should we respect the view access level, if an accessfield is present in the model

 none The placeholder to be shown if the value is not found in the data returned by the model. This placeholder goes
through JText, so you can use alanguage string if you like.

» format Seethetext field type

e show_link Seethetext field type

 url Seethetext field type

In order to filter the model you can specify <st at e> sub-elementsin the format:

<state key="state_key">val ue</state>

Where state key isthe key of a state variable and valueisits value. For instance, you could have something like:

<state key="foobar_category_id">123</state>

2.3.2.20. ordering

Thiswill display an ordering field for your list, both in traditional Joomlal method and with a new gjax drag'n'drop
method. We recommend placing this field first on your form, to respect Joomlal 3.0 and later's JUI (Joomlal User
Interface) guidelines.

Y ou can set the following attributes:
» classCSSclass

 readonly Isthisaread-only field?

86

Features reference

* disabled Isthisadisabled form element?

« onchange The onChange Javascript event

« ordertitle The field name used to display the optionstitle (if not set it will usethemagicti t | e field)
2.3.2.21. password

Thiswill display a password input field.

Y ou can set the following attributes:

+ classCSSclass

* size Size of thefield in characters

» maxlength Maximum length of the input in characters

» autocomplete Should we allow browser autocomplete of the password field?
» readonly Isthisaread only field?

+ disabled Isthisadisabled form element?

» strengthmeter Should we show a password strength meter?

* threshold What isthe minimum password strength we are supposed to accept in order to validate the field (default:
66)?

2.3.2.22. plugins

Thiswill display aselect input with alist of all installed Joomlal package.
Y ou can set the following attributes:

» classCSSclass

« folder The plugin typeto load, e.g. "system", "content” and so on.

Thelist field type's attributes apply aswell.
2.3.2.23. published

Thiswill display a status toggle input field (each time you click on it it changes the status).

Y ou can set the following attributes:

» show_published if true, the "published" status will be included in the toggle cycle (default true)

» show_unpublished if true, the "unpublished" status will be included in the toggle cycle (default true)
» show_archived if true, the "archived" status will be included in the toggle cycle (default false)

» show_trash if true, the "trash" status will be included in the toggle cycle (default false)

» show_all if true, all the available status will be included in the toggle cycle (default false)

Thelist field type's attributes apply as well.

87

Features reference

2.3.2.24. radio
Thiswill display aradio selection input.
Y ou can set the following attributes:

* classCSSclass

2.3.2.25. rules
Displaysthe ACL privileges setup user interface.

Please consult the documentation of JFormFieldRules for more information.

2.3.2.26. selectrow

Displays a checkbox to select the entire row for toolbar button operations such as edit, delete, copy etc.

2.3.2.27. sessionhandler

Thiswill display a Joomla! session handler selection input.
Y ou can set the following attributes:

» classCSSclass

Please refer to Joomlal's JFormFieldSessionHandler for more information.

2.3.2.28. spacer
Thiswill display a spacer (static element) between form elements.

Y ou can set no attributes.

2.3.2.29. sql

Thiswill display a select input based on a custom SQL query
Y ou can set the following attributes:

» classCSSclass

» key field thetable field to use as key

 value field thetablefield to display as text

* query the actual SQL query to run

We recommend avoiding this field type as the query is specific to a particular database server technology. Using the
nodel orli st typewith aprogrammatic data source is strongly encouraged.

2.3.2.30. tel
Thiswill display atext input which expects a valid telephone value.
Y ou can set the following attributes:

+ class CSSclass (default ")

88

Features reference

show_link if true, a"tel:" link will be appended around the field value (default false)

empty_replacement astring to show in place of the field when it's empty

The text field type's attributes apply as well.

2.3.2.31. text

Thiswill display asingle line text input.

Y ou can set the following attributes:

class CSSclass (default ™)

url URL template for each element (use [ITEM:ID] as a placeholder for the item id). This goes through the field
tag replacement (see below)

show_link if true, a"tel:" link will be appended around the field value (default false)
empty_replacement astring to show in place of the field when it's empty

size The size of the input in characters

maxlength The maximum acceptable input length in characters

readonly Isthisaread-only field?

disabled Isthis adisabled form field element?

format_string A string or translation key used to format the text data before it is displayed. Uses the format() PHP
function's syntax.

format_if_not_empty Should we apply the format string even when the field is empty? Default: true

parse value If set to true, the value of the field will go through the field tag replacement (see below) Default: false

2.3.2.31.1. Field tag replacement for text fields

Y ou can reference values from other fields inside your text. Y ou can do that using the square bracket tag syntax, i.e.
[TEM fi el dnane] isreplaced withthe value of thefield f i el dnane. Thetag must open with a square bracket,
followed by the uppercase word ITEM, followed by a colon, the field name and closing with a square bracket. You
must not use spaces in the tag.

FOF also recognisesthe special tag [| TEM | D] , replacing it with the value of the key field of the table.

2.3.2.32. textarea

Thiswill display atextareainput.

Y ou can set the following attributes:

class CSS class (default)
disabled Is this disabled form element?
cols Number of columns

rows Number of rows

89

Features reference

« onchange The onChange Javascript event
2.3.2.33. title

Thisis like atext field. On list views it will display a second line containing secondary information, e.g. the alias
(dlug) of the record.

The following attributes are used on top of the text field's attributes:

» dug_ field The name of the field containing the slug or other secondary information to display. Default: slug
» slug_format The format string (string or translation key) for the secondary information line. Default: (%s)
 dlug_class The CSS class of the secondary information line. Default: small

2.3.2.34. timezone

Thiswill display aselect list with all available timezones.

Y ou can set the following attributes:

» class CSS class (default ™)

2.3.2.35. url

Thiswill display atext input which expectsavalid URL.

Y ou can set the following attributes:

 class CSS class (default)

» show_link if true, an <a> link will be added around the field value (default false)

» empty_replacement astring to show in place of the field when it's empty

The text field type's attributes apply as well.

2.3.2.36. user

Thiswill display aselect list with all available Joomlal users.

Y ou can set the following attributes:

 class CSS class (default)

» show_usernameif true, show the username (default true)

e show_email if true, show the username (default true)

» show_nameif true, show the full name (default true)

» show _id if true, show theid (default true)

» show_link if true, add alink around the field value (default false)
» show_avatar if true, show the avatar (user picture). Default false.

» avatar_size size of theimage in the avatar (avatars are square, so thisis both the width and height of the avatar)

90

Features reference

e avatar_method if set to "plugin” use FOF plugins, else fall back to a Gravatar based on the user's email address

91

Chapter 4. Tips and tricks

There are some features in FOF that allow to perform neat time saving tips. As these topics are not exactly library
reference we've put them in this chapter. Consider it a grab-bag of FOF tricks!

You can view all tips and tricks on-line at https://github.com/akeebalfof /wiki/Tips%20and%20Tricks

1. Creating a slug from multiple columns

Sometimes, you want to be combine multiple columnsfrom atable to create the default 'slug’ for the records. A typical
exampleisatablerecording 'peopl€e’, where you want the slug to befirstname-lastname. to achievethis, smply override
the table class for your table, with the following method:

public function check()

{
$sl ug = $t hi s->get Col umAl i as('slug');
$this->setColumAlias('title', '"lastnane'); // this is needed to trigger the unicity c
if (!$this->$slug)
{
$this->8slug = '$this->firstnane ? $this->astnane : $this->firstname .' '. $this-
$t his->$slug = FOFStringUils::toSl ug($this->$slug);
}
return parent::check();
}

2. One to many database table relationship
deletion

Q: How to delete all rowsin achild table when the parent table's record is deleted in FoF? A: Some code in the model
file.

CREATE TABLE | F NOT EXI STS “#__foobar_itens (
“foobar _item.id bigint(20) unsigned NOT NULL AUTO | NCREMENT, *
“title® varchar(255) NOT NULL,
“description’ mediuntext,
PRI MARY KEY (foobar_itemid’)
) ENG NE = | NNODB DEFAULT CHARSET=ut f 8;

CREATE TABLE I F NOT EXI STS “#__foobar_childs" (
“foobar _child id bigint(20) unsigned NOT NULL AUTO | NCREMENT,
“foobar _item.id bigint(20) unsigned NOT NULL, *
“description’ mediuntext,
PRI MARY KEY (foobar_child_id")
) ENA NE = | NNODB DEFAULT CHARSET=ut f 8;

You could assume that the way to do delete child records when a parent record is deleted is to use MySQL's "ON
DELETE CASCADE". Wrong! Y ou could try using aMySQL trigger to effect the cascade deletion. Wrong (let alone
most hosts won't allow you to create a trigger)!

Assuming your deletion occurs in the front-end, you'll create a new site/components/com_foobar/model s/items.php:

defined(' _JEXEC) or die();

92

Tips and tricks

cl ass Foobar Mbdel | t ens ext ends FOFMbdel

{

}

/***

Delete all related records in the child table "#_ foobar_childs" when the parent table
***/

protected function onBeforeDel ete($id, $table){
$result = parent::onBeforeDel ete($id, $table);
if($result) {
$t abl e- >l oad($i d);
$chi |l di ds = FOFModel : : get Tnpl nstance(' childs',' FoobarMdel')->limt(0)->limts
i f(!enpty(S$childids)){
foreach($childids as $childid){
FOFModel : : get Tnpl nstance(' chil ds', ' Foobar Mbdel ') - >set | d($chi | di d- >f oob
}
}
}
return $result;

}

It's easier than you may have thought.

If you have a one-to-one relationship, then you'll have:

cl ass Foobar Mbdel | t ens ext ends FOFModel

{

}

3.

/***

Delete all related records in the child table "#_ foobar_childs"
when the parent table's record is deleted

***/

protected function onBeforeDel ete($id, $table){
$result = parent::onBeforeDel ete($id, $table);
if($result) {
$t abl e- >l oad($i d);
FOFMbdel : : get Tnpl nst ance(' chil ds', ' Foobar Model ') - >set | d($t abl e- >l oad($i d)) - >de
}

return $result;

}

Creating a bare view (a view without a

database table)

By default every view needs a corresponding database table. What to do when you have aview with no table associated
becauseit isnot alist or edit form?

Setup the controller

In the controller we force the edit task by adding the following code:

public function execute($task) {

93

Tips and tricks

parent::execute('edit');

}
Setup the model

In the model we need to add 2 overrides.
Override the constructor

public function __construct($config = array()) {
/1 This is a dirty trick to avoid getting warni ng PHP nessages by the
/1 JDat abase | ayer
$config['table'] = 'shops';
parent::__construct($config);

}

First we override the constructor because we need to specify atable, thisto make sure the system can read some table
but no datawill be taken from the table.

Override the getltem() method

public function getltem($id = null) {
return null;
}

We need to override the getltem() method because we are not actually getting any data. By returning anull value, the
system is happy because avalueis returned.

Setup the view

In the view you can do what you like by using the onAdd() method override.

4. Transparent authentication

Transparent authentication allows FOF to authenticate a user using Basic Authentication or URL parameters. This
allows you to create web services or directly access pages which require a logged in users without using Joomlal
session cookies.

The authentication credentials can be provided via two methods: Basic Authentication or a URL parameter. The au-
thentication credentials can either be a username and password pair transmitted in plaintext (not recommended unless
you are forcibly using HTTPS with a commercially signed SSL certificate) or encrypted. The encrypted information
uses Time-Based One Time Passwords (TOTP) to allow you to communicate the credentials securely, without the
burden of public key cryptography, while at the same time maintaining an intrinsically very narrrow window of op-
portunity. Furthermore, since the effective encryption key is modified every few seconds it makes an attack against it
dlightly harder than using regular symmetric AES-128 cryptography.

Transparent authentication is enabled by default, but doesn’t use TOTP.
Setting it up

Setting up transparent authentication requires you to modify your component’s Dispatcher class, namely its __ con-
struct(), to change the values of some protected fields.

The available fields are:

94

Tips and tricks

$fofAuth- The time step, in seconds, for the time based one time passwords (TOTP) used for encryption.

timeStep The default value is 6 seconds. The window of opportunity for an attacker is 2x-3x as much,
i.e. 12-18 seconds using the default value. Thisis adequately high to be practical and too low to
alow arealistic attack by a hacker. WARNING! If you change this option you have to notify the
consumers of the service to make the same change, otherwise your TOTPswill be vastly different
and communication will fail.

$fofAuthKey The Base32 encoded key for TOTP. Please note that this is Base32, not Base64. Only required
if you' re going to use encryption.

$fofAuthFormats Which result formats should be handled by the transparent authentication. This is an array, by
default array(‘json’, ‘csv', 'xml', ‘raw'). We recommend only using non-HTML formatsin here.

$fofAuthLogou- By default it's true and it means that once the component finishes executing, FOF will log out

tOnReturn the user it authenticated using transparent authentication. This is a precaution against someone
intercepting and abusing the session cookie Joomla! will be sending back to the client, aswell as
preventing the sessions table from filling up.

$fof AuthAuth- An array of supported authentication methods. Only use the ones that make sense for your appli-
Methods cation. Avoid using the *_Plaintext ones, please. The possible valuesin the array are:

 HTTPBasicAuth_TOTP HTTP Basic Authentication using encrypted information protected
with a TOTP (the username must be "fofauth™)

e QueryString TOTP Encrypted information protected with a TOTP passed in the _fofauthen-
tication query string parameter

e HTTPBasicAuth_Plaintext HTTP Basic Authentication using a username and password pair
in plain text

e QueryString_Plaintext Plaintext, JSON-encoded username and password pair passed in the
_fofauthentication query string parameter

When you are using the QueryString TOTP method you can pass your authentication informa
tion as GET or POST variable called _fofauthentication with the value being the URL encoded
cryptogram of the authentication credentials (see further down).

How to get a TOTP key

Any Base32 string can be used as a TOTP key as long as it expands to exactly 10 characters. If you don’t fedl like
guessing, you can simply do:

$totp = new FOFEncrypt Tot p();
$secret = $totp->generateSecret();

You have to share this secret key with all clients wishing to connect to your component via a secure channel. This
secret key musy also be set in the fof AuthK ey variable.

How to construct and supply an authentication set

The authentication set is a representation of the username and password of the user you want FOF to log in using
transparent authentication. Its format depends on the authentication method.

Before going into much detail, we should consider an FOF authentication key to be a JSON-encoded object containing
the keys username and password. E.g.:

95

Tips and tricks

{ “usernane”: “sanple_user”, “password”’: “$3Cr3+" }

Thisisused with all but one authentication methods. Encryption of the FOF authentication key, used withall *_ TOTP
methods, is discussed further down this document.

If you are using HTTPBasicAuth_Plaintext method, you have to supply your username and password using HTTP
Basic Authentication. The username is the username of the user you want to log in and the password is the password
of the user you want to log in. Thisisthe easiest and most insecure authentication method.

If you are using the HTTPBasicAuth_TOTP method, you have to supply a username of fofauth (including the leading
underscore) and as the password enter the encrypted FOF authentication key.

If you are using the QueryString_Plaintext method you have to supply a GET or POST query parameter with a name
of _fofauthentication (including the leading underscore). Its value must be the URL encoded FOF authentication key.

If you are using the QueryString_TOTP method you have to supply a GET or POST query parameter with a name of
_fofauthentication (including the leading underscore). Its value must be the URL encoded FOF authentication key.

Encrypting the FOF authentication key

Assuming you are doing this from a FOF-powered component, you can do something like this:

$timeStep = 6; // Change this if you have a different value in your D spatcher
$aut hKey = j son_encode(array(
'usernane' => $usernane,
' password' => $password
));
$totp = new FOFEncrypt Tot p($ti meSt ep) ;
$ot p = $t ot p- >get Code($secr et Key) ;
$crypt oKey = hash('sha256', $this->_fof Aut h_Key. $otp);
$aes = new FOFEncrypt Aes($crypt oKey);
$encrypt edAut hKey = $aes- >encrypt Stri ng($aut hKey) ;

If you can get your hands on a TOTP and AES-256 implementation for your favourite programming language you
can usetalk to FOF-powered components through transparent authentication. Tip: TOTP libraries are usually labelled
as being Google Authenticator libraries. Google Authenticator simply uses TOTP with a temp step of 30 seconds.

Most such libraries are able to change the time step, thus possible to use with FOF. In fact, that's how FOF's TOTP
library was derived.

5. Creating a cpanel (control panel) view

If you want to create an Administrator CPanel view in your component as the Default view follow the following steps:
Create a controller at <administrator>/controllers/cpanel.php

cl ass COVPONENT_NAMECont r ol | er Cpanel extends FOFControll er

{
public function execut e($t ask)
{
parent::execute(' browse');
}
}

96

Tips and tricks

Create a view at <administrator>/views/cpanel/tmpl/default.php. If you use Akeeba Strapper you can easily create
icons:

<?php
/] Protect from unauthorized access
defined(' _JEXEC) or die;

JHtm :: (' behavior.framework');
JHtm :: (' behavi or. nodal ');

$option = ' com COVPONENT_NAME' ;
?>

<div id="cpanel " class="spanl2">
<di v class="icon">
<a href="i ndex. php?opti on=<?php echo $option ?>&vi ew=THE_VI EW >
<i ny
src="<?php echo rtrim(JURI::base(), '/'); ?>/../nmedi a/ com COMPONENT_ NAME/ asset s/ i mages
border="0" alt="<?php echo JText::_(' COM COVPONENT_NAME_CPANEL_I CON_1_ALT") ?>"/>

<?php echo JText::_(' COM_COVPONENT_NAME_CPANEL_I CON_1') ?>

</ span>
</ a>
</div>

[...]

</div>
Customize the Cpanel toolbar creating a <administrator>/toolbar.php file with:

cl ass COVPONENT_NANETool bar ext ends FOFToobar
{

/**

* Prepares the tool bar for Cpanel view
*

* @eturn void
*/
public function onCpanel sBrowse()

{
/] Set the toolbar title

JTool Bar Hel per: :title(JText:: (' COM COMPONENT NAMVE_CPANEL_TI TLE_DASHBOARD), ' COVPONENT

/1 Add Components options (see config.xm)

JTool Bar Hel per: : preferences(' com COVWONENT_NANE') ;
}
}

6. Automatic field validation

Y ou can perform automatic table checks based on database schema. Let's say you have atable like this:

CREATE TABLE | F NOT EXI STS "#_foobar_bars™ (
“foobar_bar_id int(11) NOT NULL AUTO | NCREMENT,
“required_field wvarchar(50) NOT NULL
“optional _field wvarchar(50) DEFAULT NULL

97

Tips and tricks

PRI MARY KEY (" foobar_bar_id")
)

Asyou can see, the optional_field isnullable, whiletherequired oneisnot. To activatethisfeature, set the_autoChecks
flag to true in your table constructor:

cl ass Foobar Tabl eBar ext ends FOFTabl e

{
function __construct($table, $key, $db)
{
parent::__construct ($table, $key, $db);
$t hi s->_aut oChecks = true;
}
}

In this way, when you're going to save your table, FOF will check every field; if it's not-nullable and it's empty, the
check fails and an error message is enqueued. FOF will create a token string that will be parsed by JText, following
this convention;: COM_<TABLENAME> ERR_<FIELDNAME>

If you use the previous table, you'll have something like this:
COM_FOOBAR BAR ERR REQUIRED_FIELD
If you want to skip any field from these automatic checks, simply use this syntax in your table constructor:

$t hi s- >set Ski pChecks(array('my_field_1', 'ny_field_2"));

7. Ordering submenu items without writing any
code

In the backend of your component, FoF creates automatically a submenu with linksto all your views.

Normally they are sorted al phabetically, but you can add ordering information by placing a metadata.xml file in each
view folder. E.g. /components/com_todo/views/item/metadata.xml

The xml should be like the following:

<net adat a>
<foflib>
<orderi ng>123</ orderi ng>
</foflib>
</ net adat a>

98

Appendix A. Definitions

1. Media file identifiers

FOF expectsyou to give an abstracted path to your media (CSS, Javascript, image, ...) files, also called an "identifier".
It allowsit to perform mediafile overridesvery easily, in afashion similar to how Joomla! performstemplate overrides
for view files. This section will help you understand how they are used and how mediafile overrides work.

Mediafileidentifiers arein the form:
area://path
Where the ar ea can be one of:

media: Thefileissearched inside your site'sedi a directory. FOF will also try to locate it in the media overrides di-
rectory of your site, e.g.t enpl at es/ your _t enpl at e/ medi a whereyour_template isthe name of the currently
active template on your site.

In this case the pat h is the rest of the path relative to the media or media override directory. The first part of your
path SHOULD be your extension's name, e.g. com_example.

Example: medi a: / / com _exanpl e/ css/ st yl e. css will look for thefilet enpl at es/ your _t enpl at e/
nmedi a/ com exanpl e/ css/ styl e. css or, if it doesn't exist, medi a/ com exanpl e/ css/ styl e. css

admin : Thefileis searched for in the administration section of your extension. The first part of the path MUST be
your extension's name. The fileisfirst searched for in your template override directory.

Example: adm n://com exanpl e/ asset s/ styl e. css will look for the file adm ni strator/tem
pl at es/ your tenpl at e/ com exanpl e/ assets/style.css or, if it doesn't exist, admni ni stra-
t or/ conponent s/ com exanpl e/ asset s/ styl e. css

site: The file is searched for in the front-end section of your extension. The first part of the path MUST be your
extension's name. Thefileisfirst searched for in your template override directory.

Example: site://com exanpl e/ assets/style.css will look for the file tem
pl at es/ your _tenpl at e/ com exanpl e/ assets/style.css or, if it doesnt exist, conpo-
nent s/ com exanpl e/ asset s/ styl e. css

I mportant

FOF cannot know what isthe other side'stemplate. Let'sput it simply. If you arein thefront-end, your template
iscalled "foobar123" and you use the identifier adm n: / / com exanpl e/ asset s/ styl e. css, FOF
will look for the template override in admi ni strat or/t enpl at es/ f oobar 123/ com exanpl e/

asset s/ styl e. css. Of course thisis incorrect, but there is no viable way to know what the back-end
template in use is from the site's front-end and vice versa. As aresult, we strongly recommend only using
medi a: // identifiersfor mediafiles.

On top of that there is a security aspect as well. The front-end of your component should never try to load
media files from the back-end of the component. Many web masters choose to conceal the fact that they are
using Joomlal by means of password protection or redirection of theadm ni st r at or directory.

99

	FOF Developer's Guide
	Table of Contents
	Chapter 1. Introducing FOF
	1. Introduction
	1.1. What is FOF
	1.2. Free Software means collaboration
	1.3. Preface to this documentation

	2. Getting started with FOF
	2.1. Download and install FOF
	2.2. Using it in your extension
	2.3. Installing FOF with your component
	2.4. Sample applications

	3. Key Features

	Chapter 2. Component overview and reference
	1. Models
	1.1. Model Behaviours
	1.1.1. Introduction
	1.1.2. FOF standard Behaviors
	1.1.2.1. access
	1.1.2.2. enabled
	1.1.2.3. filters
	1.1.2.4. language
	1.1.2.5. private

	1.1.3. Adding an Existing Behavior to a Model
	1.1.4. Creating a new Behavior
	1.1.5. Available Events for Model Behaviors
	1.1.6. New Behavior Example: Published

	2. Tables
	2.1. Table Behaviors
	2.1.1. Introduction
	2.1.2. FOF Standard Behaviors
	2.1.3. Add an existing Behavior to a Table
	2.1.4. Creating a new Behavior
	2.1.5. Available Events for Table Behaviors

	2.2. Simple object relation mapping

	3. Controllers
	4. Views
	5. Dispatcher
	5.1. Transparent authentication

	6. Toolbar
	7. HMVC
	8. ACL configuration
	9. The database cursor iterator (F0FDatabaseIterator)
	10. Utility classes
	10.1. The installation script helper
	10.2. The database schema installer / updater / removal class
	10.3. The update model helper

	Chapter 3. Features reference
	1. Configuring MVC
	1.1. The $config array
	1.2. The fof.xml file
	1.2.1. Dispatcher settings
	1.2.2. Table settings
	1.2.3. View settings

	1.3. Configuration settings

	2. XML Forms
	2.1. Form types
	2.1.1. The different form types
	2.1.2. Browse forms
	2.1.2.1. Form attributes

	2.1.3. Read forms
	2.1.3.1. Form attributes

	2.1.4. Edit forms
	2.1.4.1. Form attributes

	2.1.5. Formatting your forms
	2.1.5.1. Using Bootstrap-powered tabs
	2.1.5.2. Assigning classes and IDs to <fieldset>s
	2.1.5.3. Mixing XML forms with PHP-based view templates

	2.2. Header fields type reference
	2.2.1. How header fields work
	2.2.2. Common fields for all types
	2.2.2.1. Additional attributes for search box filtering widgets
	2.2.2.2. Additional attributes for drop-down list filtering widgets

	2.2.3. Field Types
	2.2.3.1. accesslevel
	2.2.3.2. field
	2.2.3.3. fielddate
	2.2.3.4. fieldsearchable
	2.2.3.5. fieldselectable
	2.2.3.6. fieldsql
	2.2.3.7. filterdate
	2.2.3.8. filtersearchable
	2.2.3.9. filterselectable
	2.2.3.10. filtersql
	2.2.3.11. language
	2.2.3.12. model
	2.2.3.13. ordering
	2.2.3.14. published
	2.2.3.15. rowselect

	2.3. Form fields type reference
	2.3.1. Common fields for all types
	2.3.2. Field types
	2.3.2.1. accesslevel
	2.3.2.2. button
	2.3.2.3. cachehandler
	2.3.2.4. calendar
	2.3.2.5. captcha
	2.3.2.6. checkbox
	2.3.2.7. components
	2.3.2.8. editor
	2.3.2.9. email
	2.3.2.10. groupedbutton
	2.3.2.11. groupedlist
	2.3.2.12. hidden
	2.3.2.13. image
	2.3.2.14. imagelist
	2.3.2.15. integer
	2.3.2.16. language
	2.3.2.17. list
	2.3.2.18. media
	2.3.2.19. model
	2.3.2.20. ordering
	2.3.2.21. password
	2.3.2.22. plugins
	2.3.2.23. published
	2.3.2.24. radio
	2.3.2.25. rules
	2.3.2.26. selectrow
	2.3.2.27. sessionhandler
	2.3.2.28. spacer
	2.3.2.29. sql
	2.3.2.30. tel
	2.3.2.31. text
	2.3.2.31.1. Field tag replacement for text fields

	2.3.2.32. textarea
	2.3.2.33. title
	2.3.2.34. timezone
	2.3.2.35. url
	2.3.2.36. user

	Chapter 4. Tips and tricks
	1. Creating a slug from multiple columns
	2. One to many database table relationship deletion
	3. Creating a bare view (a view without a database table)
	4. Transparent authentication
	5. Creating a cpanel (control panel) view
	6. Automatic field validation
	7. Ordering submenu items without writing any code

	Appendix A. Definitions
	1. Media file identifiers

