FOF Developer's Guide

The compact reference to Joomla!'s Rapid
Application Development framework

Nicholas Dionysopoulos

FOF Developer's Guide: The compact reference to Joomla!'s Rapid

Application Development framework
Nicholas Dionysopoulos

Publication date July 2013
Copyright © 2013 Akeeba Ltd

The contents of thisdocumentation are subject to copyright |aw and are made avail able under the Joomlal Electronic Documentation License (JEDL)
[http://docs.,joomla.org/JEDL] unless otherwise stated. Y ou may find the JEDL Frequently Asked Questions [http://docs.joomla.org/JEDL/FAQ]
useful in determining if your proposed use of this material is alowed. If you have any questions regarding licensing of this material please contact
legal @opensourcematters.org [mailto:legal @opensourcematters.org]. If you wish to report a possible violation of the license terms for the material
on this site then please contact | egal @opensourcematters.org [mailto:legal @opensourcematters.org).

http://docs.joomla.org/JEDL
http://docs.joomla.org/JEDL
http://docs.joomla.org/JEDL/FAQ
http://docs.joomla.org/JEDL/FAQ
mailto:legal@opensourcematters.org
mailto:legal@opensourcematters.org
mailto:legal@opensourcematters.org
mailto:legal@opensourcematters.org

Table of Contents

O g eTe (8 eiT oo T O PP UPPPTT 1
O [L oo (0 1o o RSP PP PPPPPT 1
L1 WHREE IS FOR ..ottt e et e et e e et e e e e eba s 1

1.2. Free Software means COlaborationioiiuiioiii et 1

1.3. Preface to this dOCUMENTALIONiiiiiiiie it eeeens 1

2. Getting started With FORFo et 2
2.1. Download and inStall FOR ...ttt e 2

2.2. USING It 1N YOUI EXEEBNSION ...ttt ettt et ettt ettt e e e na e e ennens 2

2.3. Installing FOF With YOUr COMPONENToiieitieieiii et eeaee e eenens 2

2.4, SaMPIE APPHICALIONS ..ottt ettt et et e e e e e 5

3. KBY FEBIUIES ...ttt et ettt 5
2. Component OVENVIEW aNd FEFEIEINCE ittt e et e et e et e e e b 8
1Y oo L= £ TP UPPPTR 10
1.1, BUIIt-IN BENAVIOUIS ...oeviieeiii ettt e et e e et e e e e 11

O o o= PP 12
L.0.2.@NADIE ..o 12

O T 111 = £ ST PSP PPPPPTRRPPPN 12

I N = o 0= o TSP PRSPPI 14

LD, PIIVALE ..t 14

2, AL et 15
A 0o 1= £ U PP PR TSU PR 18
A VTS ettt et e et e et e e e 20
I D1 o (ol = ST PP T PPPPTTI 22
5.1. Transparent aUtNeNtiCAIONuuuiiiiiii i 23

B. TOOIDA ... ettt ettt ettt e e e 25
T HMV G o et et e et e e e e e e e aee 27
3. FEALUIES TEFEIEINCE ...ttt ettt e et e ettt e e e e e e e e eaaas 29
1. ConfigUIINg MV C ..ottt e et et e e e e s 29
1.0, THE BCONFIQ @ITAY .eeeevetuiieeee ettt ettt e e ettt e et e e e e e e e e e bbbt e e e e e e e eeaebbna e e e aeaeas 29

1.2. The FOF XM Il e 29
1.2.1. DiSPAChEr SEEINGS ... eevvuueeeiti ettt ettt ettt e et e e e et e eeeaa s 31

1.2.2. TADI@ SEIINGS ... ceeeiiieee ettt e 31

L1.2.3. VIBW SEHINGS ..ttt ettt e e et e ettt e e e e e e e e e eee 31

1.3, CoNfigUIation SEHEINGS ... oeeereeeieii ettt e e e et e e e e 32

2 A o 1 PP PTPT 34
N T o1 0 I Y 01 S PRSPPI 35
2.1.1. The different fOrmM YPES ..oovun e 35

2.1.2. BIOWSE FOMMS ... ettt ettt ettt e e ettt e e e et e e e et e e e enaneeees 35

2.1.2.1. FOrM aMDULES ... 36

2.1.3. REAA TONMMS ..ottt ettt e e et e ettt e et et e e e e et e e e enta e eeees 37

2.1.3.1. FOIrM aMDULES ... 38

N o o] A (o1 1 PP PP PPPPPT 38

2140 FOrM arDULES ... 39

2.1.5. FOrmatting YOUF TOIMMSuueiiiiii ettt et et e et e e et e e e ena e eeees 40

2.1.5.1. Assigning classes and IDSto <fieldsat>Sccooviiiiiiiiiiii e 40

2.1.5.2. Mixing XML forms with PHP-based view templatescccoooeeiiviieeinnnnnnn. 40

2.2. Header fieldS type FEfEIONCE .. .oovve e 41
2.2.1. How header fIeldS WOrKcoouuiiiiiiiii e 41

2.2.2. Common fields fOr all tYPESoceeeiieeeei e 41

2.2.2.1. Additiona attributes for search box filtering Widgets.............cceiviiiiiiinniennnn. 41

2.2.2.2. Additional attributes for drop-down list filtering widgetscoovveveiieennnnn. 42

FOF Developer's Guide

PG B = o I 1Y/ o= PSP 42
2231 ACCESIOVEL ..ot 42
2.2.3.2. Tl e 42
2233 FIEAAEvvieeiei e 43
2.2.3.4. FIeldsearchabl@uiiiiiii e 43
2.2.35. FIElASElECIADIE ... 43
2.2.3.6. TIEIASHl i e 43
2.2.3.7. fIErsearchabl @vuiii 43
2.2.3.8. fItErsaleCtable ...ccoeveieeec e 43
2.2.3.9. FIEISOl oeeeiieeei e 43
A L 0o U o = 44
22301 MOUEL .t aaa 44
A I 7 o ([~ 1 0T PN 44
2.2.3.13. PUDIISNEA «.eveeeeii e e 44
PR N (1L < [o PP 45

2.3. FOrm fieldS tyPe FEfEIENCEove et e e een 45

2.3.1. Common fields fOr @l tYPESccuuiiii e 45

2.3, 2. FIE O EYPES it 46
2.3.2.1. CCESIOVEL ..ot 46
2.3.2.2. BULLON oot 46
2.3.2.3. caChehandleroouuiiiii 46
2.3.2.4. CAlONTEN ...coeviiieeei e e 46
2.3.2.5. CAPICNA . oie e 46
2.3.2.6. ChECKDIOX ...ieiiiiei it 47
2.3.2.7. COMPONENES .. tuititiieei ettt et e e e et e e e e e e e e e e et e ae e en 47
2.3.2.8. B0 et 47
2.3.2.9. BMAIL i 48
2.3.2.10. groUpeAlISt ...ceveeiii et e 48
P2 2 N I 11T (o = o PP 48
N A |11 [S 48
2.3.2.03. IMBGELISE oieeii e 48
N S 14 = [~ PPN 49
G LT -0 o U o = 49
P2 0 T T PR 49
P A 111= o |- RSP 50
2.3.2.18. MOUEL ..ot aaa 51
PG L o (0 (= g1 0T PN 51
G O o= == Yo (o 52
G T o] 11 o 0= 52
2.3.2.22. PUDIISNEA ...viiiii e e e 52
2.3.2.23. TAI0 1ot 52
23224, TUIES ..ot 53
2.3.2.25. SEIECITOW ...iiiiiiee ittt 53
2.3.2.26. SESSIONNANAIEN ...oevviieiii e 53
2.3, 2. 2. BN ittt e 53
2.3.2.28. SOl ittt aaa 53
2.3.2.20, HEl i 53
P N O R (=« A PR 54

2.3.2.30.1. Field tag replacement for text fieldsccceveviiiiii i, 54
A I o T (= (= = PP UPTPTR 54
2.3, 2,32, I et 54
PR e B (1112740 TP 55
23234, Url oo 55
PR I ST 1= SO 55

FOF Developer's Guide

A. DEfinitionsc.ceevveneee.

1. Mediafile identifiers

List of Tables

2.1. Table foo
2.2. Table bar

2.3. View temMPlaleS TOCAHIONSuueeiitie ettt et e et e e et e e et et e e e et e e e e et e e e e enanas

Vi

Chapter 1. Introducing FOF

1. Introduction
1.1. What is FOF

FOF (Framework on Framework) isarapid application development framework for Joomlal. Unlike other frameworks
it is not standalone. It extends the Joomlal Platform instead of replacing it, featuring its own forked and extended
version of the MV C classes, keeping a strong semblance to the existing Joomlal MV C API. This means that you don't
have to relearn writing Joomla! extensions. Instead, you can start being productive from the first day you're using it.
Our goal isto aways support the officially supported LTS versions of Joomlal and not break backwards compatibility
without a clear deprecation and migration path.

FOF is compatible with the database technol ogies used by Joomlal itself: MySQL, SQL Server (and Windows Azure
SQL), PostgreSQL. In most cases you can write a component in one database server technology and have it run on
the other database server technologies with minimal or no effort.

FOF is currently used by free and commercial components for Joomlal by an increasing number of devel opers.

1.2. Free Software means collaboration

The reason of existence of FOSS (Free and Open Source Software) is collaboration between developers. FOF is no
exception; it exists because and for the community of Joomla! developers. It is provided free of charge and with all
of the freedoms of the GPL for you to benefit. And in true Free Software spirit, the community aspect is very strong.
Participating is easy and fun.

If you want to discuss FOF there is a Google Groups mailing list [https://groups.google.com/fo-
rum/?hl=en& fromgroups#! forum/frameworkonframework]. This is a peer discussion group where devel opers work-
ing with FOF can freely discuss.

If you have afeature proposal or havefound abug, but you're not sure how to codeit yourself, pleasereport it onthelist.

If you have a patch feel free to fork this project on GitHub [https://github.com/akeebalfof] (you only need a free
account to do that) and send a pull request. Please remember to describe what you intended to achieve to help me
review your code faster.

If you've found a cool hack (in the benign sense of the word, not the malicious one...), something missing from the
documentation or have atip which can help other developers feel free to edit the Wiki. We're all grown-ups and pro-
fessionals, | believethereisno need of policing thewiki edits. If you're unsure about whether awiki edit isappropriate,
please ask on thelist.

1.3. Preface to this documentation

FOF is a rapid application development framework for the Joomlal CMS. Instead of trying to completely replace
Joomlal’sown API (formerly known asthe Joomlal Platform) it builds upon it and extendsit both in scope and features.
In the end of the day it enables agony-free extension devel opment for the Joomlal CMS.

In order to exploit the time-saving capabilities of the FOF framework to the maximum you need to understand how it's
organized, the conventions used and how its different pieces work together. This documentation attempts to provide
you with this knowledge.

Aswith every piece of documentation we had to answer two big questions: where do we start and how do we structure
the content. The first question was easy to answer. Having given the presentation of the FOF framework countless
times we have developed an intuitive grasp of how to start presenting it: from the abstract to the concrete.

https://groups.google.com/forum/?hl=en&fromgroups#!forum/frameworkonframework
https://groups.google.com/forum/?hl=en&fromgroups#!forum/frameworkonframework
https://groups.google.com/forum/?hl=en&fromgroups#!forum/frameworkonframework
https://github.com/akeeba/fof
https://github.com/akeeba/fof

Introducing FOF

The second question was harder to answer. Do wewrite adry referenceto theframework or more of astory-telling doc-
umentation which builds up itsreader’ sknowledge? Sincewe are all developerswe can read the code (and DocBlocks),
meaning that the first option is redundant. Therefore we decided to go for the second option.

As aresult this documentation does not attempt to be a complete reference, a development gospel, the one and only
source of information on FOF. On the contrary, this documentation aims to be the beginning of your journey, much
like atravel guide. What matters the most is the journey itself, writing your own extensions based on FOF. Asyou go
on writing software you will be full of questions. Most of them you'll answer yourself. Some of them will be already
answered in the wiki. A few of them you'll have to ask on the mailing list. In the end of the day you will bericher in
knowledge. If you do dig up a golden nugget of knowledge, please do consider writing awiki page. This way we'll
all be richer and enjoy our coding trip even more.

Have fun and code on!

2. Getting started with FOF
2.1. Download and install FOF

You can download FOF as an installable Joomlal library package from our repository [https://
www.akeebabackup.com/download/fof .html]. Y ou can install it like any other extension under Joomlal 2.x and later.

Using the latest development version

Y ou can clone aread-only copy of the Git repository of FOF in your local machine. Make sure you symlink or copy
the fof directory to your dev site's libraries/fof directory. Alternatively, we publish dev releases in the dev release
repository [https://www.akeebabackup.com/download/fof-dev.html]. These are installable packages but please note
that they may be out of date compared to the Git HEAD. Dev releases are not published automatically and may be
several revisions behind the current Git master branch.

2.2. Using it in your extension

The recommended method for including FOF in your component, module or plugin is using this short code snippet
right after your defined('_JEXEC") or die() statement (Joomlal 2.x and later):

i f (!defined(’ FOF_I NCLUDED))
{

}

Alternatively, you can use the one-liner:

i ncl ude_once JPATH LIBRARIES . '/fof/include. php';

requi re_once JPATH LIBRARIES . '/fof/include. php';

From that point onwards you can use FOF in your extension.

2.3. Installing FOF with your component

I mportant

Joomlal 3.2 will ship with FOF pre-installed. Developers must make sure that they do not accidentally over-
write the FOF library shipped with Joomlal. Y ou can do that with an if(version_compare(JVERSION, '3.2.0',
'ge)) return; in your FOF installation code.

https://www.akeebabackup.com/download/fof.html
https://www.akeebabackup.com/download/fof.html
https://www.akeebabackup.com/download/fof.html
https://www.akeebabackup.com/download/fof-dev.html
https://www.akeebabackup.com/download/fof-dev.html
https://www.akeebabackup.com/download/fof-dev.html

Introducing FOF

Unfortunately, Joomlal doesn't allow us to version checking before installing a library package. This means that it's
your responsibility to check that thereis no newer version of FOF installed in the user's site before attempting to install
FOF with your extension. In the following paragraphs we are going to demonstrate one way to do that for Joomlal
2.x [3.x component packages.

Include a directory called fof in your installation package. The directory should contain the files of the installation
package's fof directory. Then, in your script.mycomponent.php file add the following method:

/**

* Check if FoF is already installed and install if not
*

* @aram object $parent <class calling this method
*

* @eturn array Array with performed actions sumary
*/

private function _install FOF($parent)

{

$src = $parent - >get Parent () - >get Pat h(' source');

/1 Load dependenci es
JLoader::inport('jooma.filesystemfile');
JLoader::inmport('jooma.utilities.date");
$source = $src . '/fof';

if (!defined(’ JPATH LI BRARI ES'))

{
$target = JPATH ROOT . '/libraries/fof';
}
el se
{
$target = JPATH LIBRARIES . '/fof';
}

$haveTol nstal | FOF = fal se;

if (lis_dir($target))

{
$haveTol nstal | FOF = true;
}
el se
{
$fof Version = array();
if (file_exists($target . '/version.txt'))
{
$rawData = JFile::read($target . '/version.txt');
$info = expl ode("\n", $rawData);
$fof Version['installed] = array(
"version' => trim$info[0]),
' date' => new JDate(trin($info[1]))
)
}
el se
{

$fof Version['installed] = array(

Introducing FOF

"version' = '0.0",
' dat e’ => new JDat e(' 2011-01-01")
)
}
$rawData = JFile::read($source . '/version.txt');
$info = expl ode("\n", $rawData);
$f of Ver si on[' package'] = array(
"version' => trim$info[0]),
' dat e’ => new JDate(trin($info[1]))
)

$haveTol nst al | FOF = $f of Versi on[' package'][' date']->toUN X() > $fofVersion['insta
}

$i nstal | edFOF = fal se;

i f ($haveTol nstal | FOF)
{

$versi onSource = ' package';
$installer = new Jinstaller;
$instal |l edFOF = $installer->install ($source);

}

el se

{
}

if (!isset($fofVersion))
{

$versi onSource = 'installed ;

$f of Version = array();

if (file_exists($target . '/version.txt'))
{
$rawData = JFile::read($target . '/version.txt');
$info expl ode("\n", $rawbData);
$fof Version['installed] = array(
"version' => trim$info[0]),
' date' => new JDate(trin($info[1]))

);
}
el se
{
$fof Version['installed] = array(
'version' = '0.0",
' dat e => new JDate(' 2011-01-01")

}

$rawData = JFile::read($source . '/version.txt');
$info expl ode("\n", $rawbData);
$f of Ver si on[' package'] = array(

"version' => trim$info[0]),

' date' => new JDate(trin($info[1]))

Introducing FOF

$versi onSource = 'installed ;

}

if (!($fofVersion[$versionSource]['date'] instanceof JDate))

$f of Ver si on[$ver si onSource][' date'] = new JDate;

}

return array(
"required" => $haveTol nstal | FOF,
"installed => $installedFCF,
"version' => $f of Ver si on[$versi onSource] [' version'],
' dat e’ => $f of Versi on[$versi onSource]['date']->format (' Y-md'),

}

You need to cal it from inside your postflight() method. For example:

/**

* Method to run after an install/update/uninstall nethod

*

@aram object S$type type of change (install, update or discover_install)
@aram object $parent class calling this method

@eturn void
/
function postflight($type, $parent)

{
}

*
*
*
*
*

$fof Install ati onStatus = $this->_install FOF($parent);

Warning

Dueto abug/featurein Joomlal 1.6 and later, your component's manifest file must start with aletter beforeL,
otherwise Joomla! will assume that lib_fof .xml isyour extension's XML manifest and install FOF instead of
your extension. We suggest using the com_yourComponentName.xml convention, e.g. com_todo.xml. There
is apatch pending in Joomla!'s tracker for thisissue, hopefully it will be accepted sometime soon.

2.4. Sample applications

FOF comes with two sampl e applications which are used to demonstrate its features, To-Do [https.//github.com/akee-
ba'todo-fof-exampl€e] and Contact Us [https://github.com/akeeba/contactus]. These were conceived and developed in
different points of FOF's development. As a result they are always in a state of flux and will definitely not expose
all of FOF's features.

Another good way to learn some FOF tricks is by reading the source code of existing FOF-based components. Just
remember that we are all real world developers and sometimes our code is anything but academically correct ;)

3. Key Features

Some of the key features / highlights of FOF:

https://github.com/akeeba/todo-fof-example
https://github.com/akeeba/todo-fof-example
https://github.com/akeeba/todo-fof-example
https://github.com/akeeba/contactus
https://github.com/akeeba/contactus

Introducing FOF

Convention over configuration, Rails style.

Instead of having to painstakingly code every single bit of your component, it's sufficient to use our naming conven-
tions, inspired by Ruby on Rails conventions. For example, if you have com_example, the foobar view will read from
the# _example_foobarstable which has aunique key named example foobar_id. The default implementation of con-
trollers, models, tables and views will also cater for the majority of use cases, minimising the code you'll need to write.

HMVC today, without relearning component develop-
ment.

There'salot of talk about the need to re-engineer the MV C classesin Joomla! to support HMV C. What if we could give
you HMV C support using the existing MV C classes, today, without having to relearn how to write components? Y es,
it's possible with FOF. It has been possible since September 2011, actually. And for those who mumble their words
and spread FUD, yes, it ISHMV C by any definition. The very existence of the FOFDispatcher class proves the point.

Easy reuse of view template files without ugly include().

M ore often than not you want to reuse view templatefilesacrossviews. The"traditional" way was by usinginclude() or
require() statements. This meant, however, that template overrides ceased working. Not any more! Using FOFView's
loadAnyTemplate() you can load any view template file from the front- or back-end of your component or any other
component, automatically respecting template overrides.

Automatic language loading and easy overrides.

Are you sick and tired of having to load your component's language files manually? Do you end up with a lot of
untranslated stringswhen your translators don't catch up with your new features? Y es, that sucks. It's easy to overcome.
FOF will automatically handle language loading for you.

Media files override (works like template overrides).

So far you knew that you can override Joomlal's view template files using template overrides. But what about
CSS or Javascript files? This usualy required the users to "hack core", i.e. modify your views PHP files, end-
ing up in an unmaintainable, non-upgradeable and potentially insecure solution. Not any more! Using FOF's
FOFTemplateUtils::addCSS and FOFTemplateUtils::addJS you can load your CSS and JSfiles directly from the view
template file. Even better? Y ou can use the equivalent of template overrides to let your users and template designers
override them with their own implementations. They just have to create the directory templates/your_template/me-
dia/com_example to override the files normally found in media/com_example. So easy!

Automatic JSON and CSV views with no extra code (also
useful for web services).

Why struggle to provide a remote API for your component? FOF makes the data of each view accessible as JISON
feeds opening anew world of possibilities for Joomlal components (reuse data in mobile apps, Metro-style Windows
8 tiles, browser extensions, mash-up web applications, ...). The automatic CSV views work on the same principle but
output datain CSV format, suitable for painlessly data importing to spreadsheets for further processing. Oh, did we
mention that we already have an ailmost RESTful web services implementation?

No code view templates.

Don't you hate it that you have to write a different view template (in PHP and HTML) for each Joomlal version and,
worse, each template out there? Don't you hate it having to teach non-devel opers how to not screw up your component

Introducing FOF

with every update you publish? We feel your pain. That's why FOF supports the use of XML files as view templates,
rendering them automatically to HTML. Not just forms; everything, including browse (multipleitems) and singleitem

views. Even better, you get to choose if you want to use traditional PHP/HTML view templates, XML view templates
or acombination of both, even in the same view!

No code routing, ACL and overall application configura-
tion.

Since FOF 2.1 you can define your application's routing, access control integration and overall configuration without

routing any code, just by using asimple to understand XML file. It's now easier than ever to have Joomlal extensions
with truly minimal (or no) PHP code.

Chapter 2. Component overview and
reference

FOF isan MV C framework in heart and soul. It triesto stick as close as possible to the MV C conventions put forward
by the Joomlal CM S since Joomla! 1.5, cutting down on unnecessary code duplication. The main premiseisthat your
codewill be DRY —not asthe opposite of “wet”, but asin Don't Repeat Y ourself. Simply put: if you ever find yourself
trying to copy code from a base class and paste it into a specialized class, you are doing it wrong.

In order to achieve thiscodeisolation, FOF usesavery flexible structure for your components. A component's structure
looks like this:

Dispatcher

The Dispatcher is the entry point of your component. Some people would call this a "front Controller" and this is
actualy what it is. It's different than what we typically call a Controller in the sense that the Dispatcher is the only
part of your component which is supposed to interface the underlying application (e.g. the Joomlal CMS) and getsto
decide which Controller and task to execute based on the input data (usually thisisthe request data). No matter if you
cal it an entry point, front controller, dispatcher or Clint Eastwood its job is to figure out what needs to run and run
it. We simply chose the name "Dispatcher" because, like al conventions, we had to call it something. So, basically,
the Dispatcher will take a look at the input data, figure out which Controller and task to run, create an instance of it,
push it the data and tell it to run the task. The Controller is expected to return the rendered data or a redirection which
the Dispatcher will dully pass back to its caller.

Oh, wait, what isa Controller anyway? Right below the Dispatcher you will see abunch of stuff grouped asa"triad".
The "triad" is commonly called "view" (with alowercase v). Each triad does something different in your component.
For example, one triad may alow you to handle clients, another triad allow you to handle orders and so on. Y our
component can have one or more triads. A triad usually contains a Controller, aModel and a View, hence the name
("triad" literally means "a bunch of three things"). The only mandatory member is the Controller. A triad may be
reusing the Model and View from another triad — which is another reason why DRY code rocks- or it may even be
view-less, So, atriad may actually be abunch of one, two or threethings, aslong asit includes a Controller. Just to stop
you from being confused or thinking about oriental organised crime and generally make your life easier we decided
to call these "views" (with alowercase v) instead of "triads". See? Now it is so much better.

FOF viewsfollow the"fat Model - thin Controller" paradigm. This meansthat the Controller isageneraly minimalist
piece of code and the Model iswhat getsto do all the work. Knowing this very important bit of information, let's take
alook at the innards of aview.

Component overview and reference

In the very beginning we have the Controller. The Controller has one or more tasks. Each task is an action of your
component, like showing alist of records, showing asingle record, publish arecord, delete arecord and so on. With a
small difference. The Controller's tasks do not perform the actual work. They simply spawn an instance of the Model
and push it the necessary data it needs. This is called "setting the state” of the Moddl. In most cases the Controller
will also call a Model's method which does something. It's extremely important to note that the Controller will work
with any Model that implements that method and that the Model is oblivious to the Controller. Then the Controller
will create an instance of the View class, pass it the instance of the Model and tell it to go render itself. It will take
the output of the View and pass it back to the Dispatcher.

Which brings us to the Model. The Modél is the workhorse of the view. It implements the business logic. All FOF
Models are passive Models which means that they are oblivious to the presence of the Controller and View. Actually,
they are completely oblivious to the fact that they are part of atriad. That's right, Models can be used standalone,
outside the context of the view or component they are designed to live in. The Model's methods will act upon the
state variables which have already been set (typicaly, by the Controller) and will only modify the state variables or
return the output directly. Models must never have to deal with input data directly or talk to specific Controllers and/
or Views. Models are decoupled from everything, that's where their power lies.

Just a small interlude here. Right below the Model we see a small thing called a"Table". Thisis a strange beast. It's
one part data adapter, one part model and one part controller, but nothing quite like any of this. The Table is used
to create an object representing a single record. It is typically used to check the validity of arecord before saving it
to the database and post-process a record when reading it from the database (e.g. unserialise a field which contains
serialised or JSON data).

The final piece of our view is the View class itself. It will ask the Model for the raw data and transform it into a
suitable representation. Typically this means getting the raw records from the Model and create the HTML output,
but that's not the only use for a View. A View could just as well render the data as a JSON stream, a CSV file, or
even produce a graphic, audio or video file. It's what transforms the raw data into something useful, i.e. it's your
presentation layer. Most often it will do so by loading view templates which are .php files which transform raw data
to asuitable representation. If you are using the XML forms feature of FOF, the View will ask the Model to return the
form definition and ask FOF's renderer to render thisto HTML instead. Even though the actual rendering is delegated
to the Renderer (not depicted above), it's still the View that's responsible for the final leg of the rendered data: passing
it back toitscaller. Yes, the View will actually neither output its data directly to the browser, nor talk to the underlying
application. It returns the raw data back to its caller, which is ailmost aways the Controller. Again, we have to stress
that the View is obliviousto both the Controller and the Model being used. A properly written View isfully decoupled
from everything else and will work with any data provider object implementing the same interface as a Model object
and a caller which is supposed to capture its output for further consumption.

I mportant

All classes comprising aview are fully decoupled. None is aware of the internal workings of another object
in the same or a different view. This alows you to exchange objects at will, promoting code reuse. Even
though it sounds like a lot of work it's actually less work and pays dividends the more features you get to
add to your components.

There's another bit mentioned below the triad, the Toolbar. The Toolbar is something which conceptually belongs to
the component and only hasto do with views being rendered as HTML. It'swhat renders the title in the back-end, the
actionstoolbar in the front- or back-end and the navigation links/ menu in the back-end. In case you missed the subtle
reference: FOFToolbar alows you to render an actions toolbar even in the front-end of your component, something
that's not possible with plain old Joomla!. Y ou will simply need to add some CSSto do it.

Finally we mention the Helpers. The Helpers are pure static classes implementing every bit of functionality that's
neither OOP, nor can it be categorised in any other object already mentioned. For example, methods to render drop-
down selection lists. In so many words, "Helper" is apolite way of saying "non-OOP cruft we'd rather not talk about".
Keep your Helpersto aminimum as they're aroyal pain in the rear to test.

Component overview and reference

Please do keep in mind that thisis just a generic overview of how an FOF-based component works. The real power
comes from the fact that you don't need to know the internal workings of FOF to use it, you don't need to copy and
paste code from it (woe is the developer who does that) and quite possibly you don't even need to write any code.
At all. It'sall discussed later on.

1. Models

The Model isthe workhorse. Businesslogic goes here. Models never interface input datadirectly or output data. They
are supposed to read data from their state and push the results to their state.

Class and file naming conventions

The convention for naming the model classesisConponent Model Vi ew, e.g. TodoMbdel | t ens for acomponent
named com t odo and aview named i t ens. Thelast part SHOULD be plural. Support for singular named models
(suchas TodoModel | t en) will be dropped in afuture version.

The model file MUST match the last part of the class name. This means that the file for TodoModel 1t emrs MUST
bei t ens. php, whereasthefile for TodoMbdel | t emMUST bei t em php.

All Mode files are located in your component's nodel s directories, in the front-end and back-end. If afile is not
present in the front-end, it will be attempted to be loaded from the back-end and vice versa. If the Model classis not
loaded and a suitable file cannot be found FOF will fall back to one of the following, in this order:

1. TheDefault model. Thisisaspecia model classfollowing the naming conventionsConponent Mbdel Def aul t,
e.g. TodoMbdel Def aul t, found inthedef aul t . php file inside your models directory.

2. If adefault model is not found, FOF will fall back to creating a suitably configured instance of FOFMbdel , using
convention over configuration (explained below) to determine what the model object should do.

Database table naming conventions

All FOF models connect, by default, to a database table. Y ou can of course have a model whose corresponding table
doesn't exist aslong as you do not use its default data processing methods.

Database tables are named as # _component_view, e.g. # todo_items for a component named com t odo and a
view namedi t ens.

The auto increment field is named component_view _id, e.g. todo_item_id for a component named com t odo and
aview named i t ens. If your table does not have an auto incrementing field you will not be able to use the default
implementation of FOF's data processing methods.

Y ou can override defaults without copying & pasting code, ever. This is documented in Configuring MV C.

Model behaviours

Models can implement complex, reusable functionality using behaviours. Behaviours use the Observable pattern to
"hook" into the onBefore* /onAfter* methods of the Model object to implement a feature, e.g. automatic application
of filters based on input parameters. The bundled behaviour classes are currently located inside FOF's model / be-

havi or directory. By default, only thefi | t er s behaviour is being loaded. You can add / modify behaviours in
different ways:

» By overriding the model's __construct method and using the addBehavior() method

» With the $config or fof . xml configuration overrides, using the behaviors option key

10

Component overview and reference

Please note that in both cases you are providing the last part of the behaviour's name. FOF will look for aview-specific
behaviour class and if it doesn't it will try falling back to its default implementation of the behaviour.

The convention for naming the view-specific model behaviour classesisConponent Mbdel Vi ewBehavi or Nane,
e.g. TodoModel | t ensBehavi or Fi | t er for acomponent named com t odo, aview named i t ens and abe-
haviour caledfi | t er s. The View part MUST be plural.

If the view-specific model behaviour class is not found, FOF will fall back to FOFModel Behavi or Nane, e.g.
FOFModel Behavi or Fi | t er if you are using the "filters" behaviour name. The built-in behaviours are discussed
further down in the Built-in Behaviours section.

Customising a specialised class

Unlike plain old Joomla! you are NOT supposed to copy and paste code when dealing with FOF. Our rule of thumb
is that if you ever find yourself copying code from FOFModel into your extension's specialised model class you're
doing it wrong.

FOF models can be customised very easily using the onBef or eSonet hi ng / onAf t er Sonet hi ng methods.
The Sonet hi ng isthe name of the model method they arerelated to. For example, onBef or eSave runsbeforethe
save() method executes its actions and onAf t er Save runs right after the save() method executes its actions.
Specific implementation notes for each case can be found in the docblocks of each event method.

Customising using plugin events

FOF models are designed to call certain plugin events (of "content" plugins) upon certain actions. The events are
defined in the model's protected properties as follows:

event_before delete(default: onCont ent Bef or eDel et e) istriggered before arecord is deleted.
event_after_delete (default: onCont ent Af t er Del et e) istriggered after arecord is deleted.
event_before save (default: onCont ent Bef or eSave) istriggered before arecord is saved.
event_after save (default: onCont ent Af t er Save) istriggered after arecord is saved.

event_change_state (default: onCont ent ChangeSt at e) istriggered after arecord changes state, i.e. it'spublished,
unpublished etc.

event_clean cache (default: none; doesn't run) istriggered when FOF is cleaning the cache.

Moreover, if you are using XML forms you will also see the onCont ent Pr epar eFor mevent which runs when
the form is being pre-processed before rendering.

These are the same as the standard Joomlal plugin events. This ensures that a plugin written for a core Joomlal com-
ponent can easily be extended to handle FOF components as well.

Whenever Joomlal requires us to pass a context to the plugin events we use the conventionsconponent . vi ewe.g.
com t odo. i t ens for acomponent name com t odo and amode for theitemsvi ew.

1.1. Built-in Behaviours

FOF comes with several built-in model behaviours. They are used to provide core functionality. By default only the
"filters" behaviour is attached to amodel for performance reasons. In this section we will discuss what each behaviour
does.

Y ou can combine multiple behaviours at once.

11

Component overview and reference

1.1.1. access

Adding this behaviour to amaodel object filtersthe front-end output by the viewing access levelsthe user has accessto.
I mportant

This behaviour REQUIRES the "filters" behaviour. If you have not added the "filters' behaviour it will not
have any effect on browse views. It will, however, work on edit and read views.

1.1.2. enabled

Adding this behaviour to amodel object filters the front-end output to only items which are published (enabled=1).
1.1.3. filters

| mportant

This behaviour only works on browse views.

Adding this behaviour to a model object allows FOF to magically apply filters based on the input data. For example,
if you pass &foobar=1 in the URL, or —more generally speaking— have afoobar state variable with avalue of 1 then
the SQL query used to fetch the items list will be filtered by the rows where the foobar column is set to 1.

The filters behaviour is smart enough to recognise the type of your table fields and apply the correct type filter each
time. There are several different filtering methods per field type. Besides the default filtering method which is used
when you only use aplain value in the state variable you can select a different method. To do that you need to pass a
hash (keyed) array in the state variable like this array(‘'method' => 'between’, 'from' => 1, 'to' => 10) or, in URL query
format, & foobar[method]=betweené& foobar[from]=1& foobar[to]=10.

So, let's discuss the available match types per field type.
Number fields
For numeric fields you can use the following filtering methods:

exact Thisisthe default method. Y ou can just pass the value you want to search. If you want to use the hash
array format you have the following keys:

* et hod : exact

< val ue : the value you want to search

partial For numeric fields thisisjust an aliasto exact .
between Returns records whose field value is inside the space between two numbers, inclusive. Y ou have the
following keys:

* met hod : bet ween

e from: Left barrier of the number space

* t 0 : Right barrier of the number space

For example from=1 and to=10 will search for any value between 1 to 10, including 1 and 10.

outside Returns records whose field value is outside the space between two numbers, exclusive. Y ou have the
following keys:

12

Component overview and reference

e net hod : out si de
e from: Left barrier of the number space
* t 0: Right barrier of the number space

For example from=1 and to=10 will search for any value lower than 1 or greater than 10, excluding
1 and 10.

interval Returns records whose field value is following an interval (arithmetical progression)
e nmet hod:interval
e val ue : The starting value of theinterval
e interval :Theinterval period
For example value=5 interval=2 will search for values 5, 7, 9, 11 and so on.
Boolean fields
For boolean (tiny integer) fields you can use the following methods:

exact Thisisthe default method. Y ou can just pass the value you want to search. If you want to use the hash array
format you have the following keys:

* net hod : exact

« val ue : the value you want to search
Text fields
For text fields you can use the following methods:

partial This is the default method. Y ou can just pass the value you want to search. The records returned have
that value somewhere in their fields (partial text search). If you want to use the hash array format you
have the following keys:

e met hod :parti al
« val ue : the partial phrase you want to search

exact Performs an exact search. The fields' values must be exactly equal to the value you use here. You have
the following keys:

e net hod : exact

< val ue : the exact phrase you want to search
Date fields
For date and date/time fields you can use the following methods:

exact This is the default method. Performs an exact search. The fields values must be exactly equal to the
value you use here. Y ou have the following keys:

* net hod : exact

13

Component overview and reference

partial

between

outside

interval

« val ue : the exact phrase you want to search

Y ou can just pass the value you want to search. The records returned have that value somewherein their
fields (partial text search). If you want to use the hash array format you have the following keys:

e met hod : parti al
e val ue : the partial phrase you want to search

Returns records whose field value is inside the space between two dates, inclusive. You have the fol-
lowing keys:

e net hod : bet ween
e from: Left barrier of the date space
e t o : Rightbarrier of the date space

Returns records whose field value is outside the space between two dates, exclusive. Y ou have the
following keys:

e net hod : out si de
e from: Left barrier of the number space

* t 0 : Right barrier of the number space

Warning

This method currently only works with MySQL.
Returns records whose field value is following an interval (arithmetical progression)
e met hod :i nterval
e val ue : The starting value of theinterval

e i nterval : Theinterva period. Theinterval can either beastring or an array. Asastring it contains
asign (+ to go to the future or - to go to the past), the numeric portion of the interval period and the
actual interval (days, months, years, weeks). For example:

+1 nont h to search for values every one month in the future or - 1 nont h to search for values
every one month in the past

Asan array it can look like this array('sign’ =>'+', 'value' =>'1', 'unit' => 'month’)

1.1.4. language

Adding this behaviour to a model object filters the front-end output by language, displaying only the items whose
language matches the currently enabled front-end language. Obviously this only has an effect on multi-lingual sites
when the Joomlal language filter plugin is enabled.

1.1.5. private

Adding this behaviour to a model object filters the front-end output by the created by user, showing only items that
have been created by the currently logged in user. Items not created by the current user will not be displayed.

14

Component overview and reference

2. Tables

Tablesare strange beasts. They are part dataadapter, part model and part controller. Confused? They are used to create
an object representing a single record of a database table. They're typically used to check the validity of a record
before saving it to the database and post-process a record when reading it from the database (e.g. unserialise afield
which contains serialised or JSON data). They can come in very handy to perform automated ("magic") actions when
creating / modifying / loading a database record.

Class and file naming conventions

The conventions for naming the table classesis Conponent Tabl eVi ew, e.g. TodoTabl el t emfor a component
named com t odo and aview named i t ens. Thelast part MUST be singular. It'slogical: atable class operates on
asinglerecord, ergo it's singular.

The table file MUST match the last part of the class name. This means that the file for TodoTabl el t emMUST
bei t em php.

All Tablefiles are located in your component'st abl es directoriesin the back-end. If the Table class is not loaded
and a suitable file cannot be found FOF will fall back to creating a suitable configure instance of FOFTable, using
convention over configuration (explained below) to determine what the table object should do.

Database table naming conventions

It's exactly as described in the Model reference.

Magic fields
Magic fields have special meaning for FOF. They are:
title Thetitle of an item. It's used for creating a slug.

dlug That'sthealiasof anitem, typically used as part of generated URL sby your components. By defaullt,
it will be generated out of the title using a very basic trandliteration algorithm.

enabled Is this record published or not? It's like the published column in core Joomlal components, but
usualy it isonly supposed to take values of O (disabled) and 1 (enabled).

ordering The sort order of the record.
created by The ID of the user who created the record. Handled automatically by FOF.
created_on The date when the record was created. Handled automatically by FOF.

modified by The ID of the user who last modified the record. Handled automatically by FOF.

modified _on The date when the record was last modified. Handled automatically by FOF.

locked by TheID of the user who locked (checked out) the record for editing. Handled automatically by FOF.
locked_on The date when the record was locked (checked out) for editing. Handled automatically by FOF.
hits How many read hits this record has received. Handled automatically by FOF.

asset_id TheID inthe# _assetstable for the record. Handled automatically by FOF. Only required if you

want per item ACL privileges.

15

Component overview and reference

access Viewing access level

You can always customise the magic fields names in your Table class using the _columnAlias array property. For
example, if your column is named published instead of enabled:

$this-> columAlias['enabled'] = 'published;

Now FOF will know that the published column contains the publish status of the record. This comes in handy when
you're upgrading a component from POJ (plain old Joomla!) to FOF.

Using joined tables

Quite often you can have tables that are linked together, while you can setup joins in the list view acting on the
bui | dQuery, sometimes you need these joined fields while using the table.

To do that you can simply create the join query, pass it to the FOFTabl e in the construction and you're done! FOF
will do the rest.

Let'sseeit in action with areal an example. Let's you have the table foo linked to the table bar:

Table2.1. Tablefoo

foo_id title
1 First row
2 Second row

Table2.2. Table bar

bar_id title barfield foo_id
Bar tabletitle 1 Unique column namefield 1|1
Bar table title 2 Unique column namefield 2|2

In plain sgl you should do something like this:

SELECT jos_foo.*, jos_bar.title as bar_title, barfield
FROM j os_f oo

INNER JO N jos_bar ON jos bar.foo id = jos_foo.foo_id
WHERE jos foo.foo id =1

When setting up the table, FOF already does a query likethis:

SELECT jos_foo.*
FROM j os_foo
WHERE jos foo.foo id =1

So we just have to "inject” the join part. We can do that extending the FOFTabl e, creating a query using Joomlal
object and then assigning it to the table:

<?php
cl ass Foobar Tabl eFoo extends FOFTabl e

{
public function __construct ($table, $key, &$db)

{
$query = $db->get Query(true)
->sel ect (array($db->gn('#__bar').'."'.$db->gn('title').' as '.$db->qgn(' ba

16

Component overview and reference

->select (' barfield)
->innerJoin('#_bar ON# bar.foo_id =#_ foo.foo_id);

$t hi s- >set Quer yJoi n($query);

parent::__construct($table, $key, $db);

}
}

Asyou can seg, it's quite easy to setup: you just have to create a query with no from clause (FOF will use the current
table one) and you are free to compose as you want. You can quote columns names, table names, using column or
table alias (and quote them or not) and so on: it's just aregular query. FOF will now automatically know of all fields
in your joined table query.

Customising a specialised class

Unlike plain old Joomlal you are NOT supposed to copy and paste code when dealing with FOF. Our rule of thumb
isthat if you ever find yourself copying code from FOFTabl e into your extension's specialised table class you're
doing it wrong.

FOF tables can be customised very easily using the onBef or eSonet hi ng / onAf t er Sonet hi ng methods. The
Sonet hi ng is the name of the table method they are related to. For example, onBef or eBi nd runs before the
bi nd() method executes its actions and onAf t er Bi nd runsright after the bi nd() method executes its actions.
Specific implementation notes for each case can be found in the docblocks of each event method.

Customising using plugins

Y ou can customise the actions of tables by using standard "syst ent' plugins. FOFTabl e will automatically create
plugin eventsusing afixed naming prefix and appending them with the last part of the table'sname. For example, if you
have atable called TodoTabl el t emFOF will attempt to run a system plugin event called onBef or eBi ndl t em
For the sake of documentation we will be using the suffix TABLENAME.

The obvious drawback is the possibility of naming clashes. For example, given two tables TodoTabl el t emand
Cont act usTabl el t emthe event to be called before binding datato either tableis called onBef or eBi ndl t em
How can you distinguish between the two cases? The first parameter passed to the plugin event handler is areference
to the table object itself, by convention called $t abl e. You cando a$t abl e- >get Tabl eNanme() which returns
something like#__t odo_i t ens. Just check if it's the database table you expect to be interacting with. If not, just
return true to let FOF do its thing uninterrupted.

The complete list of eventsis:

onBefore- istriggered before binding data from an array/object to the table object.
BindTABLE-
NANMVE

onAfterL oad- istriggered after arecord isloaded
TABLENANE

onBefore- istriggered before arecord is saved to the table
StoreTABLE-
NANME

onAfter- istriggered after arecord has been saved to the table
StoreTABLE-
NANVE

17

Component overview and reference

onBefore-
MoveTABLE-
NAME

onAfter-
MoveTABLE-
NANME

onBeforeRe-
orderTABLE-
NAME

onAfterRe-
orderTABLE-
NAME

onBefore-
DeleteTABLE-
NAME

onAfter-
DeleteTABLE-
NANME

onBeforeHit-
TABLENAME

onAfterHit-
TABLENAME

onBeforeCopy-
TABLENANME

onAfterCopy-
TABLENAME

onBeforePub-

lishTABLENAME

onAfterReset-
TABLENAME

onBeforeReset-
TABLENAME

istriggered before asingle record is moved (reordered)

istriggered after asingle record is moved (reordered)

istriggered before anew ordering is applied to multiple records of the table

istriggered before anew ordering is applied to multiple records of the table

istriggered before arecord is deleted

istriggered after arecord has been deleted

istriggered before registering aread hit on arecord

istriggered after registering aread hit on arecord

istriggered before copying (duplicating) arecord

istriggered after copying (duplicating) arecord

istriggered before publishing arecord

istriggered after we have reset the table object's state

istriggered before resetting the table object's state

If you return boolean false from an onBef or e event the operation is cancelled.

As you can easily understand this is an extremely powerful feature as it allows end users and site integrators (of a
power user level, granted) to modify or extend the behaviour of FOF-powered extensions with great ease.

3. Controllers

The Controller is the orchestrator of each view. You can call a specific task of the Controller —based on the input
variables you pass to it— causing it to execute a specific method. The Controller's job is to create a Model and View
object, set the state of the Model based on the request and then either call a Model's method to perform an action (e.g.

save arecord) or pass the View the Model object and tell it to render itself.

18

Component overview and reference

Class and file naming conventions

The convention for naming the controller classesisConponent Control | er Vi ew,e.g. TodoControl l erltem
for acomponent named com t odo and aview namedi t ens. Thelast part SHOULD be singular. Support for plural
named controllers (such as TodoCont r ol | er | t ens) will be dropped in a future version.

The controller file name MUST match the last part of the class name. This means that the file for TodoCont r ol -
 erlt emMUST bei t em php, whereasthefilefor TodoControl | erltens MUST bei t ens. php.

All Controller files are located in your component's controllers directories, in the front-end and back-end. If afileis
not present in the front-end, it will be attempted to be loaded from the back-end and vice versa. If the Controller class
is not loaded and a suitable file cannot be found FOF will fall back to one of the following, in this order:

1. The Default controller. This is a special controller class following the naming conventions Conrponent Con-
troll erDefaul t, eg. TodoControl |l erDefault, found in the def aul t. php file inside your con-
trol | ers directory.

2. If adefault controller is not found, FOF will fall back to creating a suitably configured instance of FOFCon-
trol | er, using convention over configuration to determine what the controller object should do.

View names and handling by a single controller

The convention in FOF is that he view name is plural when you are executing the br owse method (which returns
multiple records) and singular in al other cases. Both views are considered to be part of the same triad and are handled
by the same controller. For example, let's consider a component named com t odo and aview caledi t ens. The
view name will bei t emms when you are producing alist of all items (br owse task), but i t emin all other cases.
Both views will be handled by the TodoCont r ol | er | t emclass. Thisis different than plain old Joomlal. Y ou do
not need a different "list" and "form" controller. There's one and only one controller per view.

Customising a specialised class

Unlike plain old Joomlal you are NOT supposed to copy and paste code when dealing with FOF. Our rule of thumb
isthat if you ever find yourself copying code from FOFController into your extension's specialised table class you're
doing it wrong.

FOF controller can be customised very easily using the onBef or eSonet hi ng / onAf t er Sonet hi ng methods.
The Sonret hi ng isthe name of the controller task they arerelated to. For example, onBef or eBr ows e runsbefore
the br owse task executes and onAf t er Br owse runs right after the br owse task executes. Returning false will
result in a 403 Forbidden error. Specific implementation notes for each case can be found in the docblocks of each
event method.

Extending your controllers with plugin events

As adeveloper you've probably found yourself in a position like this: a component you found does almost what you
want. In order to make it do exactly what you want you need to change how a controller handles a specific task in
a specific view. But if you modify the controller ("hack core") you have upgrade and maintenance issues. You can
make a feature request to the developer but you don't know if and when the feature will be implemented. If you are
the developer of the component you are faced with the dilemma: do | let this client down or do | implement a feature
that doesn't quite fit my extension and will become a maintenance burden?

This is where FOF kicks in. Remember how you can customise a specialised class with onBef ore / onAft er
methods? Since FOF 2.1.0 you can handle these methods not only with a customised class but also with system plugin
events. System plugins are always loaded early in the Joomla load process (as early as the onAfterinitialise call),

19

Component overview and reference

making them an excellent choice for providing component customisation code, without the need to over-engineer
FOF's handling of Controllers.

Y ou will need to create a method named onBef or eConponent Cont r ol | er Vi ewTask, e.g. onBef or eFoo-

bar Control | er I t ensRead to handletheonBef or e event of com f oobar , itemsvi ew, r ead task. Return-
ing f al se will prevent the task from firing. Y ou can do the same for the onAf t er event. Do note that plugin events
run after the code in your controller and not instead of it or before it. The events must be implemented in system
plugins so that they always get |oaded by Joomlal before any controller gets the chance to run (remember, HMVC,
you may end up calling a controller from a module or plugin).

The signature for these plugins methodsis like this:
onBef or eConponent Control | er Vi ewTask (FOFControl |l er &controller, FOFl nput &S$input)

Both parameters are passed by reference, meaning that you can modify them from your plugin. There's a caveat:
by the time the onBef or e plugin event is called the model and view instances have already been created with the
previously existing FOFI nput instance. If you need to modify the model's state you will have to do something like
$control | er->get Thi shbdel ()->set State(' foo', $nyNewFooVal ue)

onAf t er Conponent Control | er Vi ewTask (FOFControl | er &$controller, FOFlnput &$input, &$ret)

The $r et parameter contains the return value of the task method. It is passed by reference and you can modify it
from your plugin.

4. \Views

TheViewsarethelast wheel of an MV Ctriad. Their sole purposeinlifeisto render the datain a suitable representation
that makes sense. Usually this means rendering to HTML but they can also be used to render the data as JSON, XML,
CSV or even asimages, sound and video. It's up to you to decide what a " suitable" representation meansin the context
of your application.

Class and file naming conventions

The convention for naming theview classesisConponent Vi ewVi ewnane, e.g. TodoVi ewl t emfor acomponent
named com t odo and aview namedi t em Thelast part MUST match the singular/plural name of the specific view
you are rendering.

The view file name MUST follow the convention vi ew. f or mat . php, eg. vi ew. ht ml . php. Thef or mat is
the representation format rendered by this view class. The most common formats —for which FOF provides default
implementations— are ht m , j son and csv. The format MUST match the value of the "format" input variable. If
none is specified, ht m will be assumed. Exception: thereisaformat called f or mwhich isan HTML rendering and
will be loaded when the value of the format input variable isset to ht ml (or not set at all) aslong asthereisan XML
form for this view.

All View files are located in your component's views directories, in the respective front-end and back-end directory,
inside the respective view subfolder. For example, if you have a component called com t odo and a back-end view
named i t ens the view file for the HTML rendering isadmi ni strat or/ conponent s/ com t odo/ vi ews/
itens/view htnl . php

If afileisnot present in the front-end, it will be attempted to be loaded from the back-end and vice versa. If the View
classis not loaded and a suitable file cannot be found FOF will fall back to one of the following, in this order:

1. The Default view. This is a specia controller class following the naming conventions Conponent Vi ewDe-
faul t,eg. TodoVi ewDef aul t , foundinthedef aul t/ vi ew. f or mat . php fileinside your vi ews direc-
tory.

20

Component overview and reference

2. If adefault view is not found, FOF will fall back to creating a suitably configured instance of a FOFVi ew for-
mat-specific class, using convention over configuration to determine what the model object should do. For example,
if the current format is ht M FOF will create an instance of FOFVi ewHt i . If there is no suitable class found
you will get an error as FOF has no idea what to render.

View template files and their location
FOF uses default names to generate alist or form to edit, these names are linked to the task being executed.

Table2.3. View templates locations

Task name Filename Description
br owse def aul t. php OR|Thisisthefilethat showsthelist page
formdefaul t.xnl
read form php ORform form xm |Thisisthefilethat showsthe edit page
edit item phpORformitem xm |Thisisthefile that shows the data of
a single record without being able to
edit the record

Thelocation of the filesis aso pre-defined and based on the view name. This name comesin both singular and plural
form where the singular name represents the edit page and the plural name represents the list page. Let's say our view
iscaledt odo, the template files can be found in the following location:

Vi ews

| -- todo

|-- tmmpl
formphp OR formform xm
itemphp OR formitem xm

| -- todos

|-- tmmpl
default.php OR formdefault.xm

Customising a specialised class

Unlike plain old Joomla! you are NOT supposed to copy and paste code when dealing with FOF. Our rule of thumb
isthat if you ever find yourself copying code from any FOFView class into your extension's specialised table class
you're doing it wrong.

FOF view can be customised very easily using the onTask methods. The Task here is the name of the controller
task they are related to. For example, onBr ows e runs when rendering the output of a browse task. Thereis a catch-
all method called onDi spl ay which executesif no suitable method isfound in the view class. Returning false from
these methods will result in a 403 Forbidden error.

Layouts, sub-templates and template overrides

The default filename of the template file to be used can be overridden with the |l ayout input variable. For example
if you feed an input variable named | ayout with avalue of f oobar FOF will look for f or m f oobar . xm and
f oobar . php inthet npl directory.

You can also specify sub-templates using the t pl parameter when calling the di spl ay() method of your view
class. By default FOF doesn't useit at all. You can only use it with custom controller tasks. In this case the tpl (a.k.a.
subtemplate) will be appended to the layout name with an underscorein between. Sofor | ayout =f oo andt pl =bar
FOF will be looking for thef oo_bar . php view templatefile.

21

Component overview and reference

All view template files are subject to template overrides. The view template will first be searched in the t emt
pl at es/ t enpl at e/ ht M / conponent / vi ewdirectory wheret enpl at e isthe name of your template, cont
ponent isthe name of your component (e.g. com t odo) and vi ewisthe name of your view. This allows end users
and site integrators to provide customised renderings suitable for their sites.

Joomla! version specific overrides

Itispossible have different view templates per Joomla! version or version family. The correct view templateis chosen
automatically, without you writing asingle line of code.

Let's say that you have a browse view with your lovely def aul t . php view template file. And you want your
component towork on Joomlal 2.5 and 3.x. Oh, thehorror! The markup isdifferent for each Joomla! version, Javascript
has changed, different features are available... Well, no problem! FOF will automatically search for view template
files (or XML forms) suffixed with the Joomlal version family or version number.

For example, if you're running under Joomlal 2.5, FoF will look for def aul t. j 25. php, defaul t.j 2. php
and def aul t . php in this order. If you're running under Joomlal 3.2, FOF will look for def aul t. j 32. php,
defaul t.j 3. phpanddef aul t. php inthisorder. Thisalowsyou to have adifferent view templatefile for each
version family of Joomlal without ugly if-blocks and awkward code.

This feature also works with XML forms, eg. on Joomlal 2.5 a browse form will be looked for in
formdefault.j25.xm ,formdefault.j2. xm andform default.xm inthisorder.

Automatic views and web services

FOF can automatically render your component's output in JSON and CSV formats. Y ou do not have to write any code
whatsoever. Just pass on an input variable named f or mat with avalue of j son or csv respectively. In the typical
case where you get the input variables from the request this means appending & or nat =j son or &f or mat =csv
respectively. You can, of course, customise the output of either format using view classesif you need to.

The JSON format can be used to provide web services with integrated hypermedia (following the HAL specification).
All you need to do is to tell FOFVi ewJson to use hypermedia, either by setting $t hi s- >useHypernedi a =
t rue; inyour specialised JSON view class or, much easier, using thef of . xm configuration file.

5. Dispatcher

The Dispatcher is what handles the request on behalf of your component (be it a web request or an HMV C request).
Its primary job isto decide which controller to create and which task to run. Its secondary job isto handle transparent
authentication which comes in really handy if you want to perform remote requests to your component, interacting
with access-restricted data or actions (viewing items protected behind a login, performing privileged operations such
as creating / editing / deleting records and so on).

Class and file naming conventions

The convention for naming the dispatcher classesisConponent Di spat cher, eg. TodoDi spat cher foracom-
ponent named com t odo. Thelast part MUST be Di spat cher.

The controller file name MUST be di spat cher . php. All Dispatcher files are located in your component's main
front-end or back-end directories. If afile is not present in the front-end, it will be attempted to be loaded from the
back-end but NOT viceversa. If the Dispatcher classisnot |oaded and a suitablefile cannot be found FOF will fall back
to creating a suitably configured instance of FOFDi spat cher, using convention over configuration to determine
what the Dispatcher object should do.

22

Component overview and reference

Customising a specialised class

Unlike plain old Joomlal you are NOT supposed to copy and paste code when dealing with FOF. Our rule of thumb
isthat if you ever find yourself copying code from FOFDispatcher into your extension's specialised table class you're
doing it wrong.

FOF dispatcher can be customised very easily using the onBef or eDi spat ch / onAf t er Di spat ch methods.
onBef or eDi spat ch runs before the dispatcher executes and onAf t er Di spat ch runsright after the dispatcher
executes. Returning false will result in a 403 Forbidden error. Specific implementation notes for each case can be
found in the docblocks of each event method.

5.1. Transparent authentication

Transparent authentication allows FOF to authenticate a user using Basic Authentication or URL parameters. This
allows you to create web services or directly access pages which require a logged in users without using Joomlal
session cookies.

The authentication credentials can be provided via two methods: Basic Authentication or a URL parameter. The au-
thentication credentials can either be a username and password pair transmitted in plaintext (not recommended unless
you are forcibly using HTTPS with a commercially signed SSL certificate) or encrypted. The encrypted information
uses Time-Based One Time Passwords (TOTP) to allow you to communicate the credentials securely, without the
burden of public key cryptography, while at the same time maintaining an intrinsically very narrow window of oppor-
tunity. Furthermore, since the effective encryption key is modified every few seconds it makes an attack against it
dlightly harder than using regular symmetric AES-128 cryptography.

Transparent authentication is enabled by default, but doesn’t use TOTP.
Setting it up

Setting up transparent authentication requires you to modify your component’ s Dispatcher class, namely its___con-
st ruct () method, to change the values of some protected fields.

The available fields are:

$_fof Auth_timeStepThe time step, in seconds, for the time based one time passwords (TOTP) used for encryption.
The default value is 6 seconds. The window of opportunity for an attacker is 2x-3x as much, i.e.
12-18 seconds using the default value. Thisisadequately high to be practical and too low to allow
aredlistic attack by a hacker.

| mportant

If you change this option you have to notify the consumers of the service to make the
same change, otherwiseyour TOTPswill bevastly different and communication will fail.

$ fofAuth_Key The Base32 encoded key for TOTP. Please note that this is Base32, not Base64. Only required
if you're going to use encryption.

$ fofAuth_Formats Which result formats should be handled by the transparent authentication. This is an array, by
defaultarray('json', "csv', 'xm', 'raw).Werecommendonly using non-HTML
formatsin here.

$_fof Auth_L ogoutOBRedafault it's true and it means that once the component finishes executing, FOF will log out
the user it authenticated using transparent authentication. This is a precaution against someone
intercepting and abusing the session cookie Joomla! will be sending back to the client, aswell as
preventing the sessions table from filling up.

23

Component overview and reference

$_fof Auth_AuthMetAodarray of supported authentication methods. Only use the ones that make sense for your appli-
cation. Avoid using the *_Plaintext ones, please. The possible valuesin the array are:

e« HTTPBasicAuth_TOTP HTTP Basic Authentication using encrypted information protected
with a TOTP (the username must be"_fof_auth")

¢ QueryString_TOTP Encrypted information protected with a TOTP passed in the _f of au-
t henti cati on query string parameter

« HTTPBasicAuth_Plaintext HTTP Basic Authentication using a username and password pair
in plain text

e QueryString_Plaintext Plaintext JSON-encoded username and password pair passed in the
_fofaut henti cati on query string parameter

When you are using the QueryString TOTP method you can pass your authentication information as GET or POST
variable caled _f of aut henti cati on with the value being the URL encoded cryptogram of the authentication
credentials (see further down).

How to get a TOTP key

Any Base32 string can be used as a TOTP key as long as it expands to exactly 10 characters. If you don’t feel like
guessing, you can simply do:

$totp = new FOFEncrypt Tot p();
$secret = $totp->generateSecret ();

Y ou have to share this secret key with al clients wishing to connect to your component via a secure channel. This
secret key must also be setinthe _f of Aut h_Key variable.

How to construct and supply an authentication set

The authentication set is a representation of the username and password of the user you want FOF to log in using
transparent authentication. Its format depends on the authentication method.

Before going into much detail, we should consider an FOF authentication key to be a JSON-encoded object containing
the keys username and password. E.g.:

{ “usernane”: “sanple _user”, “password”: “$3Cr3+" }

Thisisused with all but one authentication methods. Encryption of the FOF authentication key, used with all *_TOTP
methods, is discussed further down this document.

If you are using HTTPBasicAuth_Plaintext method, you have to supply your username and password using HTTP
Basic Authentication. The username is the username of the user you want to log in and the password is the password
of the user you want to log in. Thisisthe easiest and most insecure authentication method.

If you are using the HTTPBasicAuth_TOTP method, you have to supply a username of _f of _aut h (including the
leading underscore) and as the password enter the encrypted FOF authentication key.

If you are using the QueryString_Plaintext method you have to supply aGET or POST query parameter with aname of
_fofaut henti cati on (including theleading underscore). Its value must be the URL encoded FOF authentication

key.

If you are using the QueryString_TOTP method you have to supply a GET or POST query parameter with a name of
_fofauthenti cati on (including theleading underscore). Itsvalue must be the URL encoded FOF authentication

key.

24

Component overview and reference

Encrypting the FOF authentication key
Assuming you are doing this from a FOF-powered component, you can do something like this:

$timeStep = 6; // Change this if you have a different value in your D spatcher
$aut hKey = j son_encode(array(
'usernane' => $usernane,
' password' => $password
));
$totp = new FOFEncrypt Tot p($ti meSt ep) ;
$ot p = $t ot p- >get Code($secr et Key) ;
$crypt oKey = hash(' sha256', $this->_fof Aut h_Key. $otp);
$aes = new FOFEncrypt Aes($crypt oKey);
$encrypt edAut hKey = $aes- >encrypt Stri ng($aut hKey) ;

If you can get your hands on a TOTP and AES-256 implementation for your favourite programming language you
can usetalk to FOF-powered components through transparent authentication. Tip: TOTP libraries are usually labelled
as being Google Authenticator libraries. Google Authenticator simply uses TOTP with a temp step of 30 seconds.
Most such libraries are able to change the time step, thus possible to use with FOF. In fact, that's how FOF's TOTP
library was derived.

6. Toolbar

The Toolbar isthe part of your components which handles the display of the component'stitle and toolbar buttons, as
well as the toolbar submenu (links or tabs under the toolbar). While usually used in the back-end of your site, FOF
components can readily render atoolbar in the front-end part of the component as well. Do note that you will need to
provide your own CSSto style the toolbar in the front-end as Joomlal templates lack such a styling.

Class and file naming conventions

The convention for naming thetoolbar classesisConponent Tool bar,e.g. TodoTool bar for acomponent named
com t odo. Thelast part MUST be Tool bar .

The controller filename MUST bet ool bar . php. All Toolbar files arelocated in your component's main directory,
inthefront-end and back-end. If afileisnot present in thefront-end, it will be attempted to beloaded from the back-end.
If the Toolbar classisnot |oaded and a suitablefile cannot be found FOF will fall back to creating asuitably configured
instance of FOFToolbar, using convention over configuration to determine what the controller object should do.

Customising a specialised class

FOF toolbar can be customised very easily using methods following one of the following conventions, from most
specific to least specific:

onVi ew for example onl t enms Br owse. The name consists of the word on in lowercase, followed by

nanmeTasknanme camel cased view and task names, in this order. When the task is Br ows e the view name MUST
be plural. For any other task the view name MUST be singular. For example: onl t ensBr owse
andonl t emAdd

onVi ewnane for example onl t ens. The name consists of the word on in lowercase, followed by camel cased
view name.

onTasknane for exampleonBr ows e. The name consists of theword on inlowercase, followed by camel cased
task name.

25

Component overview and reference

The method to be called is selected from the most to the least specific. For example, if you have a component named
com t odo and aview named i t ens, with the task browse being called FOF will search for the following method
names, in thisorder: onl t ensBr owse, onl t ens, onBr owse

Please notethat any of these methods should only modify thetoolbar and not perform any other kind of data processing.

Customising the link bar

Thelink bar isthe area normally displayed right below the toolbar in the back-end of the site. It is usually rendered as
flat links (Joomlal 2.5), aleft-hand sidebar (Joomlal 3.0 and later) or tabs (when using Akeeba Strapper). The exact
rendering depends on the template. The interesting thing is how these links are popul ated, described below.

Automatically populated link bar

FOF will normally look inside your component's views directory and |ook for plural views. These views are automati-
cally added to thelink bar in al phabetical order. Exception: aview called cpanel will alwaysbe added to thelink bar.

If you want a view to not be included in the link bar, please create a file named ski p. xml and put it inside its
directory. FOF will see that and refrain from adding this view to the link bar.

If you want to modify the ordering of aview you haveto create or modify themet adat a. xmi fileinsideyour view's
directory. The <f of | i b> sectioninsidethe net adat a. xm fileisread by FOF. For example:

<?xm version="1.0" encodi ng="utf-8"?7>
<met adat a>
<foflib>
<orderi ng>12</ orderi ng>
</foflib>
<view title="COM FOOBAR VI EW | TEMS TI TLE">
<message><! [CDATA] COM FOOBAR VI EW | TEMS_DESC]] ></ nessage>
</ vi ew>
</ net adat a>

tells FOF that this view should be the 12th link in the link bar.

If you're not using a net adat a. xm file and have a view called cpanel or cpanel s then it will always be
reordered to the top of thelink bar list.

Fully customised link bar

The automatically generated link bar is usually enough, but sometimes you want a more complex presentation. For
example, you want to show different link bars depending on a configuration setting (e.g. a"Power user” switch in your
component's options), or a drop-down menu. To thisend, FOFTool bar provides the following methods.

public function clearLinks()
Removes all links from the link bar, allowing you to start from a clean date.
public function &getLinks()

Returns the raw data for the links in the link bar. We recommend against using it as the internal data structure may
change in the future.

public function appendLi nk($name, $link = null, $active = false, $icon = null,

26

$par ent

Component overview and reference

Appends alink to the link bar. If you use the last option ($par ent) you are creating a submenu item whose parent
isthe $par ent item. You reference the parent item by its name (i.e. the $nane parameter you used in the parent
element). Drop-downs only work in a. Joomlal 3.0 and later without any additional requirements; or b. Joomla! 2.5 but
only when using the optional Akeeba Strapper package which back ports jQuery and Bootstrap to Joomla!l 2.5 sites.

In order to use these methods you will haveto overridether ender Submenu method in FOFTool bar .

When the link bar is rendered

The link bar is rendered in all HTML views, unless you are have an input variable named t npl with a value of
conponent . Typicaly, this means that you are passing a query string parameter & npl =conponent to the URL
of your component.

Y ou can force the entire toolbar (and, by extent, the link bar) to be displayed or hidden using ther ender _t ool bar
input variable. When you set it to 0 the toolbar and link bar will not be displayed. When you set it to 1 the toolbar and
link bar will be displayed (even when you uset npl =conponent).

7. HMVC

Before we say anything else, let's define what HMV C means in the context of FOF. The H stands for "Hierarchical”.
That isto say there's a hierarchy of MV C calls. In very simple terms, HMV C alows you to call an MV C triad from
anywhere else.

Practical uses:
 Showing acomponent'sview inside amodule, without having to rewrite the model and view logic inside the module.

» Allowing a plugin (e.g. a system or content plugin) to use the rendered output of a component and inject it to the
output of the page or send it as an email.

 Displaying aview of the same or a different component within a component.

The possibilities are endless.

How to use it?

Y ou aready know it, you just didn't realise it. Here's the secret sauce:
FOFDi spat cher: : get Tnpl nst ance(' com foobar', 'itens', array('layout’' => 'fancy'))->dispatch

You are simply creating an instance of the dispatcher of the component you want, telling it which view to render and
giving it an option configuration array (the last argument in the method call). Then you just call the dispatch() method
and let it render.

If you want to get the output in a variable you have to do something like this:

@b_start();

FOFDi spat cher: : get Tnpl nst ance(' com foobar', 'itens', array('layout' => 'fancy'))->dispatch
$result = ob_end_cl ean();

If you need to pass input variables to the dispatcher you can do something like this:

FOFDi spat cher:: get Tnpl nstance(' com foobar', 'itens', array('input' => $input))->dispatch()

where $i nput can be an indexed array, a stdClass object or —preferred— a FOFI nput or JI nput instance. For
example:

27

Component overview and reference

$i nputvars = array(
"limt' => 10,
"limtstart'’ = 0,
' f oobar’ => ' baz'
)
$i nput = new FOFI nput ($i nputvars);
FOFDi spat cher: : get Tnpl nstance(' com foobar', 'itens', array('input' => $input))->dispatch()

And, of course, you can mix and match all of the above ideas to something like:

$i nput vars = array(

"limt! => 10,
"limtstart' = 0,
"format’ => 'json'
);
$i nput = new FOFI nput ($i nputvars);
@b_start();
FOFDi spat cher: : get Tnpl nstance(' com foobar', 'itens', array('input' => $input))->dispatch()

$j son = ob_end_cl ean();

See the awesome thing we just did? We got the first 10 items of com_foobar in JSON format in the $json variable.
Just a side note. This example also screws up the document MIME type if you useit in an HTML view. Be warned.

28

Chapter 3. Features reference
1. Configuring MVC

All MV C and associated classes in FOF (Dispatcher, Controller, Model, View, Table, Toolbar) come with a default
behavior, for example where to look for model files, how to handle request data and so on. While thisis fine most of
the times —as long as you follow FOF’ s conventions— thisis not always desirable.

For example, if you are building a CCK (something like K2) you may want to look for view templates in a non-
standard directory in order to support aternative “themes’. Or, maybe, if you're building a contact component you
only want to expose the add view to your front-end users so that they can file a contact request but not view other
people's contact requests. Y ou get the idea.

The traditional approach to development prescribes overriding classes, even to the extent of copying and pasting
code. If you've ever attended one of my presentations you've probably figured that | consider copying and pasting
code a mortal sin. You may have aso figured that, like al developers, | am lazy and dislike writing lots of code.
Naturally, FOF being a RAD toal it provides an elegant solution to this problem. The $conf i g array and its sibling,
thef of . xm file.

1.1. The $config array

Y ou may have observed that FOF' s MV C classes can be passed an optional array parameter $conf i g. Thisisahash
array with configuration options. It is being passed from the Dispatcher to the Controller and from there to the Model,
View and Table classes. Essentially, this is your view (MVC triad) configuration. Setting its options allows you to
modify FOF'sinternal workings without writing code.

The various possible settings are explained in The configuration settings section below.

1.2. The fof.xml file

The $confi g array is a great idea but has a mgjor drawback: you have to create one or severa .php files with
specialized classes to use it. Remember the FOF promise about not having to write code unless absolutely necessary?
Y ep, this doesn't stick very well with that promise. Sothef of . xm filewasbornin FOF 2.1.

The f of . xm fileisasimple XML file placed inside your component's back-end directory, e.g. adni ni st r a-

t or/ com exanpl e/ f of . xm . It contains configuration overrides for the front-end, back-end and CLI| parts of
your FOF component.

A sample fof.xml file

<?xm version="1.0" encodi ng="UTF-8"?>

<f of >
<l-- Conmon settings -->
<conmon>

<l-- Table options cormmon to all tables -->
<tabl e nane="*">
<field name="1 ocked_by" >checked_out </ fi el d>
<field nane="I ocked_on">checked out tine</field>
</t abl e>
<l-- Table options for a specific table -->

29

Features reference

<t abl e name="itent>
<fi el d name="enabl ed" >publ i shed</fi el d>

</t abl e>
</ common>
<l-- Conponent back-end options -->
<backend>

<l-- Dispatcher options -->

<di spat cher >
<option nane="defaul t_vi ew' >i tens</option>
</ di spat cher >
</ backend>

<l-- Conponent front-end options -->
<front end>
<l-- Dispatcher options -->

<di spat cher >
<option nane="defaul t_vi ew'>i t enx/ opti on>
</ di spat cher >
<l-- Options common for all views -->
<vi ew name="*">
<I-- Per-task ACL settings. The star task sets the default ACL privileges for
<acl >
<task nanme="*">fal se</task>
</ acl >
</ vi ew>
<vi ew name="iteni >
<l-- Task mapping -->
<t askmap>
<task name="list" >browse</task>
</ taskmap>
<l-- Per-task ACL settings. An enpty string renoves ACL checks. -->

<acl >
<l-- Everyone, including guests, can access dosonething -->
<t ask name="dosonet hi ng" ></t ask>
<l-- Only people with the core.manage privil ege can access the sonethi nge
<t ask name="sonet hi ngel se">cor e. manage</t ask>
</ acl >
<l-- Configuration options for the nodel and view -->
<confi g>
<opti on nane="behaviors">filter, access</option>
</ config>
</ vi ew>
</frontend>

</ fof>

Thef of . xm filehasan <f of > root element. Insideit you can have zero or onetagscalled <f r ont end>, <back-

end> and <cl i > which configure FOF for front-end, back-end and CLI| access respectively. You may aso have
atag named <common> which defines settings applicable for any mode of access. These common settings will be
overridden by the corresponding settings defined in the <f r ont end>, <backend> and <cl i >. Please note that the
CLI isyet another special case: it will mix the common, back-end and CLI settings to derive the final configuration.
In the other two cases (front- or back-end access) only the common and the configuration for this specific mode of
access will be used.

30

Features reference

1.2.1. Dispatcher settings

Y ou can configure the way the Dispatcher works using the <di spat cher > tag. Inside it you can have one or more
<opt i on> tags. The name attribute defines the name of the configuration variable to set, while the tag's content
defines the value of this configuration variable.

The available variables are:

default_view Defines the default view to show if noneis defined in the input data. By default thisis cpanel. In
the example above we set it to items in the back-end and item in the front-end.

1.2.2. Table settings

The table settings allow you to set up table options, in case you do not wish to use the default conventions of FOF.
Y ou define the tabl e the options apply to using the name attribute of the view tag. Please note that thisisthe name used
in the class, not in the database. So, if you have a database table named # _example_items and your class is named
Exanpl eTabl el t emyou must usename="it enf' inthef of . xm file.

The settings of each table are isolated from the settings of every other table, with one notable exception: the star table,
i.e.name="*", Thisisaplaceholder table that defines the default settings. These settings are applied to al tables. If
you also have atable tag for a view, the default settings (from the star table) and the settings for the particular table
are merged together. This appliesto all settings described below.

Field map settings

Thefield map settings allow you to map specific magic field namesto your table's fields, in case you do not use FOF's
contentions. It works the same way as adding setting the _col unmAl i as array in your specialized Table class.

Thefield map isenclosed insidethe <t abl e> tagitself. It consistsof one or more<f i el d> tags. The name attribute
defines the name of the magic (FOF convention) field to map, whereas the content of the tag defines the name of the
field in your database table.

1.2.3. View settings

There are several optionsthat are applied per view. In the context of thef of . xm file, a“view” actually refersto an
MV C triad, not just the View part of the triad. In so many words, the options affect the Controller, Model and View
used to render this particular component view. Y ou define the view the options apply to using the name attribute of
the view tag.

The settings of each view are isolated from the settings of every other view, with one notable exception: the star view,
i.e.name="*". Thisisaplaceholder view that defines the default settings. These settings are applied to al views. If
you also have aview tag for a view, the default settings (from the star view) and the settings for the particular view
are merged together. This appliesto all settings described below.

Task map settings

The task map settings allow you to map specific tasks to specific Controller methods. Other frameworks would call
thisthe “routing” feature. It works the same way as adding running registerTask in your speciaized Controller class.

Thetask map isenclosed inside asingle <t askmap> tag. Y ou can have exactly zero or one <t askmap> tagsinside
each view tag.

Inside the <t asknap> tag you can have one or more <t ask> tags. The name attribute defines the name of the task
to map, whereas the content of the tag defines the controller’s method which will be called for thistask.

31

Features reference

ACL settings

The ACL settings can be used to override or fine-tune the access control for each task of the particular view. Even
though FOF comes with default ACL mappings for its basic tasks, these are not always sufficient or appropriate for
all situations. Normally thisis achieved by overriding the onBefore methods in the Controller, e.g. onBef or eSave
to set up the ACL checks for the save task. Y ou can use the ACL mappingsinthef of . xm instead of such checks.
You can even use the ACL mapping inf of . xml for custom tasks for which no onBefore method exists.

The ACL settings are enclosed inside asingle <acl > tag. Y ou can have exactly zero or one <acl > tagsinside each
view tag.

Inside the <acl > tag you can have one or more <t ask> tags. The nane attribute defines the name of the task to
apply the access control, whereas the content of the tag defines the Joomlal ACL privilege required to access thistask.
Y ou can use any core ACL privilege or any custom ACL privilege defined in your component'saccess. xm file. If
you leave the content blank then no ACL check is performed (the task is always accessible by al users). If you usethe
special valuef al se thenthe ACL privilegeis aways going to fail, i.e. the task will not be accessible by any user.

Option settings

The configuration options of views and models can be modified directly from the view definition of f of . xm . The
configuration settings are enclosed inside a single <conf i g> tag. Inside it you can have one or more <opti on>
tags. Each tag is equivalent to passing a value in the $conf i g array. The nane attribute defines the name of the
configuration setting you want to modify. The content of the tag is the value of this setting. See the Configuration
settings section below for more information on what each setting is supposed to do.

1.3. Configuration settings

The following settings can be used either in the $config array passed to a Dispatcher, Controller, Model or View class
orinthef of . xm file's<opti on>tagsinside the <vi ew> tags.

autoRouting A bit mask which defines the automatic URL routing of redirections.
A value of 1 means that front-end redirections will be put through Joomlal’sJRout e: : ().
A value of 2 meansthat back-end redirections will be put through Joomlal’sJRout e: : ().
Y ou can combine multiple values by adding them together.

asset_key The key to be used for ACL assets. This is typically in the form conponent .vi ew, e.g.
com exanpl e. i t emThisis only used for per-item ACL privileges. If you do not specify an
asset key, the default conponent .vi ew convention will be used instead.

base path The base path of the component.
* In$confi g: Specify the absolute path.
e Inf of . xm : Specify a path relative to the site’ sroot.
behaviors Add model behaviours. See the FOFModel documentation for more information on behaviours.
* In$confi g: Anarray containing the names of model behavioursto add
e Infof.xm : A commaseparated list with the names of model behavioursto add
cacheableTasks A comma separated list of tasks which support Joomlal’s caching.

cid Define a comma separated list of item IDsto limit the view on. Normally thisis empty. Only use
when you want to limit aview to very specific items. Only valid in the f of . xm file.

32

Features reference

csrf_protection

default_task
event_after_delete

event_after_save

Should we be doing atoken check for the tasks of this view? The possible values are:
* 0 - no token checks are performed
» 1 - token checks are always performed

» 2 - token checks are always performed in the back-end and in the front-end, but only when the
request format isht m (default setting)

» 3 - token checks are performer only in the back-end
The task to execute if none is defined. The default valueisdi spl ay.
The content plugin event to trigger after deleting the data. Default: onCont ent Af t er Del et e

The content plugin event to trigger after saving the data. Default: onCont ent Af t er Save

event_before_deleteThe content plugin event to trigger before deleting the data. Default: onCont ent Bef or e-

event_before save

Del et e

The content plugin event to trigger before saving the data. Default: onCont ent Bef or eSave

event_change_state The content plugin event to trigger after changing the published state of the data. Default: on-

event_clean_cache

helper_path

id

ignore_request

layout

model_path

model_prefix

modelName

Cont ent ChangeSt at e
The content plugin event to trigger when cleaning cache. There is no default value.

The path where the View will be looking for helper classes. By default it's the helpers directory
inside your component's directory.

* In$confi g: Specify an absolute path.
e Inf of . xm : Specify apath relative to the component's directory.

Define an item ID to limit the view on. Normally thisis empty. Only use when you want to limit
aview to onesingleitem. Only valid inthef of . xm file.

Setto1topreventtheModel'spopul at eSt at e() method from running. By default the method
isempty and does nothing, asthe Model is supposed to be decoupl ed from the request information,
having the Controller push state variablesto it.

The default layout to use for this view. Thisis normally determined automatically based on the
task currently being executed.

The path where the Controller will be looking for Model class files. By default it's the models
directory of the component's directory.

* In$confi g: Specify an absolute path.
e Inf of . xm : Specify apath relative to the component's directory.

The naming prefix for the Model to be loaded by the Controller. The default option is Conpo-
nent namreModel where Conponent nane is the name of the component without the com_
prefix.

The name of the Model class to load. Automatically defined based on the component and view
names.

33

Features reference

searchpath

table_path

table

thl

thl_key

template_path

use _table cache

view_path

viewName

The path where Controller classes will be searched for. By default it'sthecont r ol | er s direc-
tory inside your component's directory.

* In$confi g: Specify the absolute path.
e Inf of . xm : Specify a path relative to the component's root directory.

The path where the Model will be looking for table classes. By default it's the tables directory
inside your component's directory.

* In$config: Specify an absolute path.

 Infof.xml: Specify a path relative to the component's directory.

Set the name of the table class the Model will use. Please note that the the component name is
added to this name automatically. For example, given a component com exanpl e and atable

setting of f oobar the actual table class which will be used will be Exanpl eTabl eFoobar .

The name of the database tableto usein thetable class of thisview. Itisintheformat of # table-
name, e.g. # example items

The name of the key field of the database table to use in the table class of thisview. It isin the
format of component_view_id, e.g. example_item_id.

The path where the View will belooking for view template (.php) or form (.xml) files. By default
it'sthet npl directory inside the current view's directory.

* In$confi g: Specify an absolute path.

e Infof . xm : Specify apath relative to the component's directory.

By default FOF caches the names of the tables in the database and their field definitions in the
file JIPATH_CACHE/ f of / cache. php, where JPATH_CACHE is usually the cache directory
in the front- or back-end of your site respectively. If you've set Debug Syst emto Yes inyour
site's Global Configuration then by default the cache is not used.

Y ou can override this behaviour per view / for all views of acomponent using this parameter. Set
to 0 to force the cache to never be used or set it to 1 to force the cache to always be used (even
when your siteisin debug mode).

The path where the Controller will be looking for View class files. By default it's the vi ews
directory inside your component's directory.

* In$confi g: Specify an absolute path.
e Inf of . xm : Specify apath relative to the component's directory.

The name of the View class to load. Automatically defined based on the component and view
names.

2. XML Forms

Traditionally, creating view templates involves a .php file where PHP and HTML code are intermixed to create the
appropriate representation of the data to be served to a web browser. While this gives maximum flexibility to the
developer it isalso adrag, requiring you to write alot of repetitive code.

Features reference

Joomlal 1.6 and later is providing a solution to this problem, at least for edit views: JForm. With it it's possible to
create an XML file which defines the controls of the form and have JForm render it asHTML.

Pros:
» Theview templates are easier to read

e The HTML generation is abstracted, making it easier to upgrade to newer versions of Joomlal using a different
HTML structure

Cons:
* You need to change your Controllers, Models and Views to cater for and display the forms
» They only apply to edit views

FOF takes this concept further with the FOFForm package. Not only can you create edit views, but you can also create
browse (records listing) and read (single record display) views out of XML forms. Moreover, the forms are handled
automatically by the FOF base MV C classes without requiring you to write any additional code. If you want you can
always combine atraditional .php view template with aform file for maximum customisation of your view.

2.1. Form types
2.1.1. The different form types

As implied above, there are three types of XML forms available in FOF: Browse, Read and Edit. Each one follows
dightly different conventions and is used in different tasks of each MV C triad. In this section we are going to present
what each of those types does and what isits structure.

There afew things you should know before we go into more details.

All formfilesare placed in your view'st npl directory, e.g. conponent s/ com exanpl e/ vi ews/i tenms/tm
pl .

All form files' names begin with f or m and end with . xmd . Thisis required for Joomlal to distinguish them from
view metadata XML files. The middle part of their name follows the same convention as the regular view template
files, i.e. "default" for browse tasks, "form" for edit tasks and "item" for read tasks.

For example, the browse form for com exanpl e's items view is located in conponent s/ com exanpl e/
views/itens/tnpl/formdefault.xm whereasthe form for editing a single item is located in conpo-
nent s/ com exanpl e/ views/item tnpl/form form xm

2.1.2. Browse forms

Browse forms are used to create arecords list view. They are typically used in the back-end to allow the user to view
and manipulate alist of records. A typical browse form looks like this:

<?xm version="1.0" encodi ng="utf-8"?>
<form
| essfil es="medi a://com todo/css/backend. | ess| | medi a:// com t odo/ css/ backend. css”
type="br onse"
show_header =" 1"
show filters="1"
show _pagi nati on="1"

35

Features reference

nor ows_pl acehol der =" COM_TODO_COVMON_NORECORDS"

<header set >

<header name="ordering" type="ordering" sortable="true" tdw dth="1% />

<header name="todo_item.id" type="rowsel ect” tdw dth="20" />

<header name="title" type="fiel dsearchabl e" sortabl e="true"

butt ons="yes" buttoncl ass="btn"

/>

<header name="due" type="field" sortable="true" tdw dth="12% />

<header name="enabl ed" type="published" sortable="true" tdw dth="8% />
</ header set >

<fiel dset name="itens">
<field nane="ordering" type="ordering" |abelclass="order"/>

<field nane="todo_item.id" type="selectrow'/>

<field nane="title" type="text"
show | i nk="true"
url ="i ndex. php?opti on=com t odo&anp; vi ew=i t em&anp; i d=[| TEM 1 D] "
cl ass="t odoi t enf
enpty_replacement="(no title)"
/>

<field nane="due" type="duedate" />

<field nane="enabl ed" type="published"/>
</fieldset>
</fornmp

You MUST have exactly one<header set > and one<f i el dset > tag. The nan® attribute of the<f i el dset >
MUST awaysbei t errs. Extratagsand/or <f i el dset > tagswith different name attributes (or no name attributes)
will beignored.

2.1.2.1. Form attributes

The enclosing <f or n» tag MUST have the following attributes:

type It must be aways set to br owse for FOF to recognise this as a Browse form
The enclosing <form> tag MAY have one or more of the following attributes:

lessfiles FOF alows you to include LESS files to customise the styling of your components. Y ou can give
acomma separated list of LESSfiles identifiers (see the "Mediafilesidentifiers' section below)
to be loaded by FOF. For examplenedi a: / / com exanpl e/ | ess/ backend. | ess

Compiled LESS files are cached inthenedi a/ |1 i b_f of / conpi | ed di rect ory for effi-
ciency reasons, using a mangled filename for privacy/security reasons. They are not written in
your site's cache or adminstrator/cache directory as these directories are not supposed to be web-
accessible, whereas the compiled CSSfiles, by definition, need to be web-accessible.

Since LESS files require a lot of memory and time to compile you can also provide an
aternative pre-compiled CSS file, separated from your LESS file with two bars. For ex-
ample: medi a: // com_exanpl e/ | ess/ backend. | ess| | medi a: / / com_exanpl e/
css/ backend. css

36

Features reference

cssfiles This works in the same manner as the lessfiles directive, but you are only supposed to speci-
fy standard CSS files. The CSS files are defined using identifiers, too. For exanpl e: ne-
di a: // com exanpl e/ css/ backend. css

Please note that mediafile overrides rules are in effect for these CSSfiles.

jsfiles Works the same way as cssfiles, but it's used to load Javascript files. The Javascript files are
defined using identifiers, too. For example: medi a: / / com exanpl e/ j s/ backend. j s

Please note that media file overridesrules are in effect for these Javascript files.

show_header Should we display the header section of the browse form? This is the place where the field titles
are displayed.
show _filters Should we show the filter section of the browse form? On Joomla! 2.5 thisis the area below the

header where the user can filter the display based on his own criteria. On Joomla! 3.0 and later
this areaisrendered in the sidebar, at the left hand side of the records list.

show_pagination Should we show the pagination results? That's the links to the first, second, third, ..., last page
and the drop-down for the number of items per page. It is displayed below the list of records.

norows placeholder A trandation key displayed instead of arecords list when the current view contains no records,
e.g. thetable is empty or the filters limit display to zero records.

2.1.3. Read forms

While browse views display alist of records, read forms will display just a single record. These are nowhere near as
powerful as hand-coded PHP-based view templates but can be used to get a quick single item output in a snatch when
prototyping a component or when your dataisreally smple. A typical read form looks like this:

<?xm version="1.0" encodi ng="utf-8"?7>

<form
| essfiles="nedia://comtodo/css/frontend. | ess||nedia://comtodo/css/frontend. css"
type="read"

>

<fieldset name="a_single_itent class="todo-itemcontainer formhorizontal">
<field name="title" type="text"

| abel =""
class="todo-title-field"
si ze="50"

/>

<field nane="due" type="duedate"
| abel =" COM TODO | TEMS_FI ELD DUE"
| abel cl ass="t odo-fiel d"

si ze="20"
def aul t =" NOW
/>
<field nane="description" type="editor"
| abel =""
/>
</fieldset>

</fornp

You MUST haveat least one<f i el dset > tag. The name attribute of the <f i el dset > isindifferent.

37

Features reference

2.1.3.1. Form attributes

The enclosing <f or n» tag MUST have the following attributes:

type It must be aways set tor ead for FOF to recognise this as a Read form
The enclosing <form> tag MAY have one or more of the following attributes:

lessfiles FOF alows you to include LESS files to customise the styling of your components. Y ou can give a
comma separated list of LESS files identifiers (see the "Mediafiles identifiers' section below) to be
loaded by FOF. For example: medi a: / / com exanpl e/ | ess/ backend. | ess

Compiled LESSfilesare cachedinthermedi a/ | i b_f of / conpi | ed directory for efficiency rea-
sons, using amangled filename for privacy/security reasons. They are not writtenin your sitescache
or adm nstrat or/ cache directory as these directories are not supposed to be web-accessible,
whereas the compiled CSSfiles, by definition, need to be web-accessible.

Since LESS files require a lot of memory and time to compile you can aso provide an al-
ternative pre-compiled CSS file, separated from your LESS file with two bars. For exam-
plee nedi a://com exanpl e/l ess/ backend. | ess| | nedi a: // com exanpl e/ css/
backend. css

cssfiles This works in the same manner as the | essfi | es directive, but you are only supposed to
specify standard CSS files. The CSS files are defined using identifiers, too. For example: ne-
di a: // com exanpl e/ css/ backend. css

Please note that mediafile overrides rules are in effect for these CSSfiles.

jsfiles Works the same way as cssfi | es, but it's used to load Javascript files. The Javascript files are
defined using identifiers, too. For example: medi a: / / com _exanpl e/ j s/ backend. j s

Please note that media file overrides rules are in effect for these Javascript files.

2.1.4. Edit forms

Edit forms are used to edit a single record. They are typically used in the back-end. If you want to use an Edit form
in the front-end you will need to specialise your Toolbar class to render a front-end toolbar in the edit task of this
specific view, otherwise the form will not be able to be submitted (unless you do other tricks, outside the scope of
this devel opers documentation).

An edit form looks like this:

<?xm version="1.0" encodi ng="utf-8"?>

<form
| essfiles="nedi a://comtodo/css/backend. | ess| | nmedi a://com todo/ css/ backend. css"
val i date="true"

<fi el dset nane="basi c_configuration”
| abel =" COM_TODO_| TEMS_GROUP_BASI C'
descri pti on="COM TODO_| TEMS_GROUP_BASI C_DESC'
cl ass="span6"

<field nane="title" type="text"
cl ass="i nput box"
| abel =" COM_TODO_| TEMS_FI ELD _TI TLE"
| abel cl ass="t odo-| abel todo-I| abel -nain"
requi red="true"

38

Features reference

si ze="50"
/>

<field nane="due" type="cal endar"
cl ass="i nput box™"
| abel =" COM_TODO_| TEMS_FI ELD_DUE"
| abel cl ass="t odo- | abel "
requi red="true"
si ze="20"
def aul t =" NOW
/>
<field nane="enabl ed" type="list" |abel ="JSTATUS"
| abel cl ass="t odo- | abel "
descri ption="JFI ELD PUBLI SHED DESC' cl ass="i nput box"
filter="intval" size="1" default="1"

<option val ue="1">JPUBLI SHED</ opt i on>
<option val ue="0">JUNPUBLI SHED</ opti on>
</field>
</fieldset>
<fi el dset nane="descri ption_group”
| abel =" COM_TODO_| TEMS_GROUP_DESCRI PTI ON'
descri pti on="COM TODO | TEM5_GROUP_DESCRI PTI ON_DESC"
cl ass="span6"

>
<field nane="description" type="editor"
| abel =""
cl ass="i nput box™"
requi red="fal se”
filter="JConponent Hel per::filterText" buttons="true"
/>
</fieldset>
</fornmp

2.1.4.1. Form attributes

The enclosing <f or n» tag MAY have one or more of the following attributes:

lessfiles FOF allows you to include LESS files to customise the styling of your components. Y ou can give a
commaseparated list of LESSfiles identifiers (seethe "Mediafilesidentifiers' section below) to be
loaded by FOF. For example: medi a: / / com exanpl e/ | ess/ backend. | ess

Compiled LESS files are cached in the nedi a/l i b_f of / conpi | ed directory for efficiency
reasons, using a mangled filename for privacy/security reasons. They are not written in your site's
cache oradm nstrat or/ cache directory as these directories are not supposed to be web-ac-
cessible, whereas the compiled CSSfiles, by definition, need to be web-accessible.

Since LESS files require a lot of memory and time to compile you can also provide an al-
ternative pre-compiled CSS file, separated from your LESS file with two bars. For exam-
ple. medi a: // com exanpl e/ | ess/ backend. | ess| | medi a: // com exanpl e/ css/
backend. css

cssfiles This works in the same manner as the | essfi | es directive, but you are only supposed to
specify standard CSS files. The CSS files are defined using identifiers, too. For example: me-
di a: // com exanpl e/ css/ backend. css

39

Features reference

Please note that mediafile overrides rules are in effect for these CSSfiles.

jsfiles Works the same way as cssfi | es, but it's used to load Javascript files. The Javascript files are
defined using identifiers, too. For example: medi a: / / com exanpl e/ j s/ backend. j s

Please note that media file overridesrules are in effect for these Javascript files.

validation Set it to t r ue to have Joomlal load its unobtrusive Javascript validation script. Please note that
FOF does not perform automatic server-side validation checks. This is the responsibility of your
specialised Table class and its check() method.

2.1.5. Formatting your forms

OK, granted, the automatically rendered formsare atimesaver but, by default, they ook terrible. Thisis quite expected.
It's like comparing a rug churned out by a mechanised production line (the automatically rendered form) and a hand-
stiched persian rug (the hand-coded PHP-based view template). The good newsisthat, unlike rugs, there's some room
of improvement with XML forms.

For starters, the<f i el dset >sof Edit and Read forms, aswell asthe fields themselves, can be assigned CSS classes
and | Dswhich can help you provide acustom style. Moreover, you can mix XML forms and PHP-based view templates
to further customise the display of your forms.

In this section we will cover both customisation methods. If this doesn't sound enough for your project you can always
use hand-coded PHP-based view templates, much like how you did since Joomlal 1.5.0. It's up to you to decide which
method is best for your project!

2.1.5.1. Assigning classes and IDs to <fieldset>s

Each fieldset of a Read and Edit form can have the following optional attributes:

class One or more CSS classes to be applied to the generated <di v> element.

name Thevalue of thisattribute is applied to the id attribute of the generated <di v> element.

label Thevalueof thisattributeisrendered asalevel 3 heading (<h3>) element at thetop of the generated <di v>
element.

If you are using Joomlal 3 (which has Bootstrap by default) or Joomlal 2.5 together with the optional Akeeba Strapper
package (which back ports Bootstrap to Joomlal 2.5) you can use Bootstrap's classes to create visually interesting
interfaces. For example, usingcl ass="span6 pul | -1 ef t " will create a half-page-wide left floating sidebar out
of your field set.

2.1.5.2. Mixing XML forms with PHP-based view templates

Inside your .php view template file you can use $t hi s- >get Render edFor n() to return the XML form file
rendered asHTML. This allows you to customise the layout (e.g. adding information before/after the form) while still
using the XML file to render the actual form.

To use this approach, simply insert this code in your custom .php template file:

<?php
$vi ewTenpl ate = $t hi s- >get Render edForm() ;

echo $vi ewTenpl at e;
2>

40

Features reference

2.2. Header fields type reference

2.2.1. How header fields work

A header field has two distinct functions:

It is used to render headersin list views which are used to label the columns of the display and optionally allow
you to sort the table by a specific field

It isused to render filtering widgets (drop-down lists and search boxes). In Joomlal 2.5 you can only render filtering
widgets directly below a header field in alist table and you can only have up to as many filtering widgets as your
fields. In Joomlal 3.x and abovethe filtering widgets are rendered either above the header fields (search boxes) orin
the left-hand column (drop-down lists). Asin Joomlal 3.x and above the filters are detached from the header fields
you can have as many filters as you want, even more than the number of fields you are displaying in thefilter list.

A leader field can render only a header, only afilter or both. Most of the header field types render both. Those whose
name starts with fi | t er will only render a filtering widget, but not a header field. As a result these header fields
will only work on Joomla! 3.x and later.

2.2.2. Common fields for all types

For all following fields you can set the following attributes:

name The name of the header field. This has to match the table field name in the model.

If you want to create a header for a calculated field or for a column that doesn't correspond to a table field please
use a name that doesn't overlap with the name of a column in the table. If you want to list afield many times (e.g.
display arow selection checkbox and the record ID at the same time) you will have to use the same nane in both
headers, but use a different i d attribute.

type The header type. See below for the available field types, as well as the options which can be specified in each
one of them.

label The language string which will be used for the label of the header; this is a language string that will be fed
to JText::_() for trandation.

id Thei d attribute for this header. Skip it to have FOF create one based on the field name.

If none is provided FOF will automaticaly create one using the convention
component_modelname_fieldname LABEL where component is the name of your component, modelname is
the name of your model (usually equals to the view name) and fieldname is the name of the field. For ex-
ample, for a component com_foobar, a view named items and a field named baz we get the language string
COM_FOOBAR_ITEMS BAZ_LABEL.

tdwidth The width of this column in the list table. Y ou can use percentile or pixel units, i.e. t dwi dt h="10%
ortdwi dt h="120px"

sortable Set to "true” if you want to be able to sort the table by this field.
filterclass The CSS class for the filtering widget

onchange The Javascript code to be executed when the filtering widget's value is modified

2.2.2.1. Additional attributes for search box filtering widgets

The following attributes apply to all header fields rendering a search box filtering widget:

41

Features reference

sear chfieldname The name of the field that will be searchable. If omitted it will be the same asthe nane attribute.

placeholder The placeholder text when the field is empty. Useful to explain what kind of information this search
field is supposed to be searching in.

size The size (in characters) of the search box
maxlength The maximum length in characters which is allowed to be entered in the field

buttons Set to true (or skip) to show Go and Reset buttons next to the text field. Set to "false” to hide those buttons.
The user can till press Enter to submit the form.

buttonclass The CSS class of the Go and Reset buttons

2.2.2.2. Additional attributes for drop-down list filtering widgets

This element has <opt i on> sub-elements defining the available options. Please consult Joomlal'sown | i st field
type for more information.

Since FOF 2.1.0 we allow you to use a programmatically generated data source instead of the hard-coded <opt i on>
tags. This can be used when you need your code to generate options based on some configuration data, data from the
database and so on. Y ou do that by supplying the name of a PHP class and a static method on that class which returns
the data. The data must be returned in an indexed array where the key is the key of the drop-down list item and the
valueisthe description (translation key or string). Y ou may also use asimple array containing indexed arrays by using
thesour ce_key and sour ce_val ue attributes.

The following additional attributes apply to all header fields rendering a drop-down list filtering widget.

source file (optional) The PHP file which provides the class and method. It is given in the pseu-
do-URL formate.g.admi n: / / conponent s/ com f oobar / hel per s/ mydat a. phporsite:// conpo-
nent s/ com f oobar/ hel per s/ nydat a. php for afilerelative to the administrator or site root directory re-
spectively.

sour ce_class (required) The name of the PHP classto use, e.g. Foobar Hel per Mydat a
source_method (required) The static method of the PHP classto use, e.g. get SonreFoobar Dat a

source key (optional) If you are using an array of indexed arrays, thisisthe key of the indexed array that contains
the key of the drop-down option.

source_key (optional) If you are using an array of indexed arrays, thisisthe key of the indexed array that contains
the value (description) of the drop-down option.

sour ce_trandate (optional) By default all values are being trandated, i.e. fed through JText:: (). If you don't want
that, set this attribute to "false".

2.2.3. Field Types

2.2.3.1. accesslevel

Displays a header field with aviewing access level drop-down filtering widget.

There are no additional attributes to set.

2.2.3.2. field

Displays a header field, without any filtering widget.

42

Features reference

There are no additional attributes to set.

2.2.3.3. fielddate

Displays a header field with a date selection search box filtering widget.

The additional attributes you can set are:

* readonly Set to true to make the search box read only

« disabled Set to true to disable the search box (it displays but you can't click on it)

« filter Skip to show the date/time as entered. Set to SERVER_UTC to convert a date to UTC based on the server
timezone. Set to USER_UTC to convert a date to UTC based on the user timezone.

2.2.3.4. fieldsearchable

Displays a header field with a search box filtering widget.
There are no additional attributes to set.

2.2.3.5. fieldselectable

Displays a header field with a drop-down list filtering widget.
There are no additional attributes to set.

2.2.3.6. fieldsql

Displaysaheader field with adrop-down list filtering widget. The source of thefilter values comesfrom an SQL query.
The additional attributes are:

» key_field thetablefield to use as key

» value field thetable field to display as text

* query the actual SQL query to run

We recommend avoiding this field type as the query is specific to a particular database server technology. Using the
nodel orfi el dsel ect abl e typewith a programmatic data source is strongly encouraged.

2.2.3.7. filtersearchable

Thisis the same as fieldsearchable but no header is rendered. Only the filtering widget is rendered. This header field
type only works on Joomlal 3.x and later.

2.2.3.8. filterselectable

This is the same as fieldsel ectable but no header is rendered. Only the filtering widget is rendered. This header field
type only works on Joomlal 3.x and later.

2.2.3.9. filtersql

This is the same as fieldsgl but no header is rendered. Only the filtering widget is rendered. This header field type
only works on Joomlal 3.x and later.

The same warning applies to using thisfield type.

43

Features reference

2.2.3.10. language
Displays a header field with a drop-down list containing the languages installed on your site.
The additional attributes are:

 client If setto"site" displaysalist of installed front-end languages. If set to "administrator” displaysalist of installed
back-end languages. Defaullt: site.

2.2.3.11. model
Similar to the fieldsel ectabl e header, but gets the options from a FOFModel descendant.
Y ou can set the following attributes on top of those of the 'fieldselectable’ field type's:

» model The name of the model to use, e.g. FoobarM odelltems

key field The name of thefield in the model's results which is used as the key value of the drop-down
« value field The name of the field in the model's results which is used as the label of the drop-down

« trandate Should the value field's value be passed through JText::_() before being displayed?
 apply_access Should we respect the view access level, if an accessfield is present in the model

» none The placeholder to be shown if the value is not found in the data returned by the model. This placeholder goes
through JText, so you can use alanguage string if you like.

In order to filter the model you can specify <st at e> sub-elementsin the format:

<state key="state_ key">val ue</ st at e>

Where state key isthe key of a state variable and valueisits value. For instance, you could have something like:

<state key="foobar_category_id">123</state>

2.2.3.12. ordering
Displays a header field which allows reordering of your data.
On Joomlal 2.5 it displays the name of the field followed by a disk icon which saves the ordering.

On Joomla! 3.x and later it displays an "up and down triangle" icon. When clicked the AJAX-powered reordering
handles in the list view become enabled.

There are no additional attributes.

2.2.3.13. published

Displays a header field and a drop-down filtering field for Published / Unpublished and related publishing options.
The additional attributes are:

» show_published Should we show the Published statusin the filter? Default: true

 show_unpublished Should we show the Unpublished status in the filter? Default: true

Features reference

show_ar chived Should we show the Archived statusin the filter? Default: false
show_trash Should we show the Trashed statusin the filter? Default: false

show_all Should we show the All status in the filter? Default: false. Y ou actually don't need this as no selection
resultsin al records, irrespective of their publish state, to be displayed.

2.2.3.14. rowselect

Displays a checkbox which, when clicked, automatically selects all the row selection checkboxesin the list.

There are no additional attributes.

2.3. Form fields type reference

2.3.1. Common fields for all types

For all following fields you can set the following attributes:

name The name of the field. This has to match the table field name in the model.

If you want to create a header for a calculated field or for a column that doesn't correspond to a table field please
use a hame that doesn't overlap with the name of a column in the table. If you want to list a field many times (e.g.
display arow selection checkbox and the record ID at the same time) you will have to use the same nane in both
fields, but use adifferenti d attribute.

type The field type. See below for the available field types, as well as the options which can be specified in each
one of them.

label The language string which will be used for the label of the field; this is a language string that will be fed
to JText::_() for trandation. If you leave it empty FOF will automatically generate a language string using the
convention COVPONENTNAVE VI EWNAVE_FI ELDNAMVE _LABEL.

id Thei d attribute for thisfield. Skip it to have FOF create one based on the field name.

If none is provided FOF will automatically creste one using the convention
component_modelname_fieldname LABEL where component is the name of your component, modelname is
the name of your model (usually equals to the view name) and fieldname is the name of the field. For ex-
ample, for a component com_foobar, a view named items and a field named baz we get the language string
COM_FOOBAR_ITEMS BAZ_LABEL.

emptylabel Set thisto 1 if you intend to have afield without alabel. In this case you must NOT definethel abel
atribute.

description The language string which will be used for the label of the field; this is alanguage string that will be
fed to JText::_() for trandation.

required Set it to 1, yes or true to make this arequired field. If you use the form validation then the form cannot
be submitted unlessthis valueisfilled in.

I mportant

The automatic label and description only apply if you are using Akeeba Strapper or if you
are using Joomla! 3.0 and later. If you are using FOF on plain old Joomlal 2.5 you must
providethel abel anddescri pti on attributes manually.

45

Features reference

2.3.2. Field types

2.3.2.1. accesslevel
Thiswill display aselect list with existing Joomlal Access Levels.
Y ou can set the following attributes:
* class CSSclass (default ™)
2.3.2.2. button
Thiswill display an input button.
Y ou can set the following attributes:
» class CSS class (default ™)
* icon Bootstrap icon to add to the button (default ™)
« onclick "onclick" attribute to add to the button (default *)
* text Button text value; thisis alanguage string that will be fed to JText:: () for trandation
2.3.2.3. cachehandler
Thiswill display aselect list with available Joomlal cache handlers
Y ou can set the following attributes:
 class CSS class (default)
2.3.2.4. calendar
Thiswill display a calendar/date field.
Y ou can set the following attributes:
 class CSS class (default)
» format (defaults '%Y -%m-%d")
+ filter can be one the following:
¢ SERVER _UTC convert adate to UTC based on the server timezone

e USER UTC convert adateto UTC based on the user timezone

2.3.2.5. captcha
Thiswill display a captchainput.
Y ou can set the following attributes:

* plugin The name of the CAPTCHA plugin to use. Leave empty to use whatever is the default on in the Global
Configuration of the Joomla! site

46

Features reference

2.3.2.6. checkbox

Thiswill display a single checkbox input.

Y ou can set the following attributes:

class CSSclass (default ™)
value the input value
checked the default status for input

disabled Is this adisabled form element?

2.3.2.7. components

Thiswill display aselect with alist of installed Joomlal components

Y ou can set the following attributes:

class CSSclass (default ™)

client_ids comma separated list of applicable client ids (note: 0 = admin, 1 = site)
readonly isthisaread only field?

disabled Isthis a disabled form element?

multiple Should we allow multiple selections?

onchange onchange JavaScript event

2.3.2.8. editor

Thiswill display aWY SIWY G edit areafield for content creation and formatted HTML display.

Y ou can set the following attributes:

class CSSclass (default ™)

rows How many rows the generated <t ext ar ea> will have, typically used when Javascript is disabled on the
browser

cols How many columns the generated <t ext ar ea> will have, typically used when Javascript is disabled on the
browser

height The height of the editor (default: 250)

width The width of the editor (default: 100%)

asset_field The name of the asset_id field in the form (default: asset_id)
created by field The name of the created by field in the form

asset_id The Joomlal asset ID for this record. Leave empty to let FOF use the value of the asset field defined by
asset_field.

47

Features reference

* buttons Which buttons should we show (rendered by editor-xtd plugins)? Use 0, false or no to show now buttons,
otherwise provide a comma separated list of button plugin names

+ hide Which buttons should we hide? Similar to above.
2.3.2.9. email

Thiswill display atext input which expects avalid e-mail address.
Y ou can set the following attributes:

» class CSS class (default)

» show_link if true put amailto: link around the address (default false)
* size Size of the text input in characters

» maxlength Maximum length of the input in characters

* readonly Isthisaread only field?

* disabled Isthisadisabled form element?

 onchange onchange Javascript event

2.3.2.10. groupedlist

Thiswill display a grouped drop down list.

Y ou can set the following attributes:

* class CSS class (default ™)

This element supports sub-elements organised in <gr oup> and <opt i on> tags. For moreinformation please consult
the documentation of Joomla!'s JFormFieldGroupedList element.

2.3.2.11. hidden
Thiswill display a hidden input.

You can set the common attributes. Moreover, to make sure this field is rendered properly, you MUST define the
attribute enpt yl abel =" 1" and NOT assign alabel attribute at all.

2.3.2.12. image

Thisisan diasfor the "media’ field type (see below).

2.3.2.13. imagelist

Thiswill display a media selection field showing images from a specified folder.
Y ou can set the following attributes:

+ classCSSclass

« directory folder to search theimagesin

e styleinline style

48

Features reference

¢ width HTML width attribute
* height HTML height attribute
« align HTML align attribute

* rel HTML rel attribute

« titleimagetitle

o filter The filtering string for filenames to show. Default: \ . png$|\. gi f$|\.j pg$|\. bnp$|\. i co9|
\.jpeg$|\.psd$|\.eps$

2.3.2.14. integer

Thiswill display atext input which expects avalid integer value.
Y ou can set the following attributes:

» class CSS class (default)

« first Starting number

* last Last number to show

 step Step for increasing the numbers

For example, when using first=10, last=20 and step=2 you get alist of 10, 12, 14, 16, 18, 20.
2.3.2.15. language

Thiswill display aselect input of all available Joomla! languages
Y ou can set the following attributes:

» class CSS class (default ™)

« client Can take the values of 'site' or 'administrator' to show the available languages for the front- and back-end
respectively.

2.3.2.16. list
Thiswill display aselect input of generic options.

IMPORTANT The following attributes apply to all field types that present a drop-down list; they all descend from
thisfield type.

Y ou can set the following attributes:

* class CSS class (default ™)

 readonly Isthisaread-only field?

+ disabled Isthisadisabled form element?

» multiple Should we allow multiple selections?

» onchange The onChange Javascript event

49

Features reference

url URL template for each element (use [ITEM:ID] as a placeholder for the item id)

show_link if true, adds a link around each item based on the "url" attribute (default false)

This element has <opt i on> sub-elements defining the available options. Please consult Joomlal's own element of
the same type for more information.

Since FOF 2.1.0 we allow you to use a programmeatically generated data source instead of the hard-coded <opt i on>
tags. This can be used when you need your code to generate options based on some configuration data, data from the
database and so on. Y ou do that by supplying the name of a PHP class and a static method on that class which returns
the data. The data must be returned in an indexed array where the key is the key of the drop-down list item and the
valueisthe description (translation key or string). Y ou may also use asimple array containing indexed arrays by using
thesour ce_key and sour ce_val ue attributes.

The relevant attributes are;

source file (optional) The PHP file which provides the class and method. It is given in the pseu-
do-URL formate.g. admni n: / / conponent s/ com f oobar / hel per s/ mydat a. phporsite:// conpo-
nent s/ com f oobar/ hel per s/ nydat a. php for afilerelative to the administrator or site root directory re-
spectively.

sour ce_class (required) The name of the PHP classto use, e.g. Foobar Hel per Mydat a
source_method (required) The static method of the PHP classto use, e.g. get SoneFoobar Dat a

source _key (optional) If you are using an array of indexed arrays, thisisthe key of the indexed array that contains
the key of the drop-down option.

source_key (optional) If you are using an array of indexed arrays, thisisthe key of the indexed array that contains
the value (description) of the drop-down option.

sour ce_translate (optional) By default all values are being trandated, i.e. fed through JText::_(). If you don't want
that, set this attribute to "false".

2.3.2.17. media

Thiswill display a media selection field.

Y ou can set the following attributes:

class CSSclass

styleinline style

width HTML width attribute

height HTML height attribute

align HTML align attribute

rel HTML rel attribute

titleimagetitle

asset_field The name of the asset_id field in the form (default: asset_id)

created by field The name of the created by field in the form

50

Features reference

 asset_id The Joomlal asset ID for this record. Leave empty to let FOF use the value of the asset field defined by
asset_field.

* link The link to a media management component to use. Skip this to use Joomlal's own com_media (strongly
recommended!)

» sizeField sizein characters

 onchange The onChange Javascript event

» preview Should we show apreview of the selected mediafile?

e preview_width Maximum width of preview in pixels

» preview_height Maximum height of preview in pixels

« directory Directory to scan for images relative to site's root. Skip to use the site'simages directory.
2.3.2.18. model

Similar to the list field, but gets the options from a FOFModel descendant.

Y ou can set the following attributes on top of those of the 'list' field type's:

» model The name of the model to use, e.g. FoobarM odelltems

» key_field The name of the field in the model's results which is used as the key value of the drop-down
 value field The name of thefield in the model's results which is used as the label of the drop-down
« trandlate Should the value field's value be passed through JText:: () before being displayed?
 apply_access Should we respect the view access level, if an accessfield is present in the model

» none The placeholder to be shown if the value is not found in the data returned by the model. This placeholder goes
through JText, so you can use alanguage string if you like.

» format Seethetext field type
» show_link Seethetext field type
» url Seethetext field type

In order to filter the model you can specify <st at e> sub-elementsin the format:

<state key="state_key">val ue</ st at e>

Where state_key isthe key of a state variable and valueisits value. For instance, you could have something like:

<state key="foobar category id">123</state>

2.3.2.19. ordering

Thiswill display an ordering field for your list, both in traditional Joomlal method and with a new gjax drag'n'drop
method. We recommend placing this field first on your form, to respect Joomlal 3.0 and later's JUI (Joomlal User
Interface) guidelines.

51

Features reference

2.3.2.20. password

Thiswill display a password input field.

Y ou can set the following attributes:

» classCSSclass

* size Size of thefield in characters

» maxlength Maximum length of the input in characters

» autocomplete Should we allow browser autocompl ete of the password field?
» readonly Isthisaread only field?

» disabled Isthis adisabled form element?

e strengthmeter Should we show a password strength meter?

* threshold What isthe minimum password strength we are supposed to accept in order to validate the field (default:
66)?

2.3.2.21. plugins

Thiswill display aselect input with alist of all installed Joomla! package.
Y ou can set the following attributes:

+ classCSSclass

+ folder The plugin typeto load, e.g. "system", "content" and so on.

Thelist field type's attributes apply aswell.
2.3.2.22. published

Thiswill display a status toggle input field (each time you click on it it changes the status).

Y ou can set the following attributes:

» show_published if true, the "published" statuswill be included in the toggle cycle (default true)

» show_unpublished if true, the "unpublished" status will be included in the toggle cycle (default true)
» show_archived if true, the "archived" status will be included in the toggle cycle (default false)

» show_trash if true, the "trash" status will be included in the toggle cycle (default false)

» show_all if true, all the available status will be included in the toggle cycle (default false)

Thelist field type's attributes apply as well.

2.3.2.23. radio

Thiswill display aradio selection input.

Y ou can set the following attributes:

52

Features reference

+ classCSSclass

2.3.2.24. rules

Displaysthe ACL privileges setup user interface.

Please consult the documentation of JFormFieldRules for more information.
2.3.2.25. selectrow

Displays a checkbox to select the entire row for toolbar button operations such as edit, delete, copy etc.

2.3.2.26. sessionhandler

Thiswill display a Joomla! session handler selection inpuit.
Y ou can set the following attributes:

+ classCSSclass

Please refer to Joomlal's JFormFieldSessionHandler for more information.

2.3.2.27. spacer
Thiswill display a spacer (static element) between form elements.

Y ou can set no attributes.

2.3.2.28. sql

Thiswill display a select input based on a custom SQL query
Y ou can set the following attributes:

» classCSSclass

» key field thetablefield to use as key

» value field thetable field to display as text

* query the actual SQL query to run

We recommend avoiding this field type as the query is specific to a particular database server technology. Using the
nodel orli st typewith aprogrammatic data source is strongly encouraged.

2.3.2.29. tel

Thiswill display atext input which expects a valid telephone value.

Y ou can set the following attributes:

 class CSS class (default)

» show_link if true, a"tel:" link will be appended around the field value (default false)
* empty_replacement astring to show in place of the field when it's empty

The text field type's attributes apply as well.

53

Features reference

2.3.2.30. text

Thiswill display asingle line text input.

Y ou can set the following attributes:

class CSSclass (default ")

url URL template for each element (use [ITEM:ID] as a placeholder for the item id). This goes through the field
tag replacement (see below)

show_link if true, a"tel:" link will be appended around the field value (default false)
empty_replacement astring to show in place of the field when it's empty

size The size of the input in characters

maxlength The maximum acceptable input length in characters

readonly Isthisaread-only field?

disabled Isthisadisabled form field element?

format_string A string or translation key used to format the text data before it is displayed. Uses the format() PHP
function's syntax.

format_if_not_empty Should we apply the format string even when the field is empty? Default: true

parse value If set to true, the value of the field will go through the field tag replacement (see below) Default; false

2.3.2.30.1. Field tag replacement for text fields

Y ou can reference values from other fields inside your text. Y ou can do that using the square bracket tag syntax, i.e.
[I TEM fi el dnane] isreplaced with thevalue of thefieldf i el dnane. The tag must open with asquare bracket,
followed by the uppercase word ITEM, followed by a colon, the field name and closing with a square bracket. Y ou
must not use spaces in the tag.

FOF also recognisesthe special tag [| TEM | D] , replacing it with the value of the key field of the table.

2.3.2.31. textarea

Thiswill display atextareainput.

Y ou can set the following attributes:

class CSSclass (default *)

disabled Is this disabled form element?
cols Number of columns

rows Number of rows

onchange The onChange Javascript event

2.3.2.32. title

Thisis like a text field. On list views it will display a second line containing secondary information, e.g. the aias
(slug) of the record.

Features reference

The following attributes are used on top of the text field's attributes:

slug_field The name of the field containing the slug or other secondary information to display. Default: slug
slug_format The format string (string or translation key) for the secondary information line. Default: (%s)

slug_class The CSS class of the secondary information line. Default: small

2.3.2.33. timezone

Thiswill display aselect list with all available timezones.

Y ou can set the following attributes:

class CSSclass (default ")

2.3.2.34. url

Thiswill display atext input which expectsavalid URL.

Y ou can set the following attributes:

class CSS class (default)
show_link if true, an <a> link will be added around the field value (default false)

empty_replacement astring to show in place of the field when it's empty

The text field type's attributes apply as well.

2.3.2.35. user

Thiswill display aselect list with all available Joomlal users.

Y ou can set the following attributes:

class CSSclass (default ™)

show_usernameif true, show the username (default true)

show_email if true, show the username (default true)

show_name if true, show the full name (default true)

show_id if true, show theid (default true)

show_link if true, add alink around the field value (default false)

show_avatar if true, show the avatar (user picture). Default false.

avatar_size size of theimage in the avatar (avatars are square, so thisis both the width and height of the avatar)

avatar_method if set to "plugin” use FOF plugins, else fall back to a Gravatar based on the user's email address

55

Appendix A. Definitions

1. Media file identifiers

FOF expectsyou to give an abstracted path to your media (CSS, Javascript, image, ...) files, also called an "identifier".
It allowsit to perform mediafile overridesvery easily, in afashion similar to how Joomla! performstemplate overrides
for view files. This section will help you understand how they are used and how mediafile overrides work.

Mediafileidentifiers arein the form:
area://path
Where the ar ea can be one of:

media: Thefileissearched inside your site'sedi a directory. FOF will also try to locate it in the media overrides di-
rectory of your site, e.g.t enpl at es/ your _t enpl at e/ medi a whereyour_template isthe name of the currently
active template on your site.

In this case the pat h is the rest of the path relative to the media or media override directory. The first part of your
path SHOULD be your extension's name, e.g. com_example.

Example: medi a: / / com _exanpl e/ css/ st yl e. css will look for thefilet enpl at es/ your _t enpl at e/
nmedi a/ com exanpl e/ css/ styl e. css or, if it doesn't exist, medi a/ com exanpl e/ css/ styl e. css

admin : Thefileis searched for in the administration section of your extension. The first part of the path MUST be
your extension's name. The fileisfirst searched for in your template override directory.

Example: adm n://com exanpl e/ asset s/ styl e. css will look for the file adm ni strator/tem
pl at es/ your tenpl at e/ com exanpl e/ assets/style.css or, if it doesn't exist, admni ni stra-
t or/ conponent s/ com exanpl e/ asset s/ styl e. css

site: The file is searched for in the front-end section of your extension. The first part of the path MUST be your
extension's name. Thefileisfirst searched for in your template override directory.

Example: site://com exanpl e/ assets/style.css will look for the file tem
pl at es/ your _tenpl at e/ com exanpl e/ assets/style.css or, if it doesnt exist, conpo-
nent s/ com exanpl e/ asset s/ styl e. css

I mportant

FOF cannot know what isthe other side'stemplate. Let'sput it simply. If you arein thefront-end, your template
iscalled "foobar123" and you use the identifier adm n: / / com exanpl e/ asset s/ styl e. css, FOF
will look for the template override in admi ni strat or/t enpl at es/ f oobar 123/ com exanpl e/

asset s/ styl e. css. Of course thisis incorrect, but there is no viable way to know what the back-end
template in use is from the site's front-end and vice versa. As aresult, we strongly recommend only using
medi a: // identifiersfor mediafiles.

On top of that there is a security aspect as well. The front-end of your component should never try to load
media files from the back-end of the component. Many web masters choose to conceal the fact that they are
using Joomlal by means of password protection or redirection of theadm ni st r at or directory.

56

	FOF Developer's Guide
	Table of Contents
	Chapter 1. Introducing FOF
	1. Introduction
	1.1. What is FOF
	1.2. Free Software means collaboration
	1.3. Preface to this documentation

	2. Getting started with FOF
	2.1. Download and install FOF
	2.2. Using it in your extension
	2.3. Installing FOF with your component
	2.4. Sample applications

	3. Key Features

	Chapter 2. Component overview and reference
	1. Models
	1.1. Built-in Behaviours
	1.1.1. access
	1.1.2. enabled
	1.1.3. filters
	1.1.4. language
	1.1.5. private

	2. Tables
	3. Controllers
	4. Views
	5. Dispatcher
	5.1. Transparent authentication

	6. Toolbar
	7. HMVC

	Chapter 3. Features reference
	1. Configuring MVC
	1.1. The $config array
	1.2. The fof.xml file
	1.2.1. Dispatcher settings
	1.2.2. Table settings
	1.2.3. View settings

	1.3. Configuration settings

	2. XML Forms
	2.1. Form types
	2.1.1. The different form types
	2.1.2. Browse forms
	2.1.2.1. Form attributes

	2.1.3. Read forms
	2.1.3.1. Form attributes

	2.1.4. Edit forms
	2.1.4.1. Form attributes

	2.1.5. Formatting your forms
	2.1.5.1. Assigning classes and IDs to <fieldset>s
	2.1.5.2. Mixing XML forms with PHP-based view templates

	2.2. Header fields type reference
	2.2.1. How header fields work
	2.2.2. Common fields for all types
	2.2.2.1. Additional attributes for search box filtering widgets
	2.2.2.2. Additional attributes for drop-down list filtering widgets

	2.2.3. Field Types
	2.2.3.1. accesslevel
	2.2.3.2. field
	2.2.3.3. fielddate
	2.2.3.4. fieldsearchable
	2.2.3.5. fieldselectable
	2.2.3.6. fieldsql
	2.2.3.7. filtersearchable
	2.2.3.8. filterselectable
	2.2.3.9. filtersql
	2.2.3.10. language
	2.2.3.11. model
	2.2.3.12. ordering
	2.2.3.13. published
	2.2.3.14. rowselect

	2.3. Form fields type reference
	2.3.1. Common fields for all types
	2.3.2. Field types
	2.3.2.1. accesslevel
	2.3.2.2. button
	2.3.2.3. cachehandler
	2.3.2.4. calendar
	2.3.2.5. captcha
	2.3.2.6. checkbox
	2.3.2.7. components
	2.3.2.8. editor
	2.3.2.9. email
	2.3.2.10. groupedlist
	2.3.2.11. hidden
	2.3.2.12. image
	2.3.2.13. imagelist
	2.3.2.14. integer
	2.3.2.15. language
	2.3.2.16. list
	2.3.2.17. media
	2.3.2.18. model
	2.3.2.19. ordering
	2.3.2.20. password
	2.3.2.21. plugins
	2.3.2.22. published
	2.3.2.23. radio
	2.3.2.24. rules
	2.3.2.25. selectrow
	2.3.2.26. sessionhandler
	2.3.2.27. spacer
	2.3.2.28. sql
	2.3.2.29. tel
	2.3.2.30. text
	2.3.2.30.1. Field tag replacement for text fields

	2.3.2.31. textarea
	2.3.2.32. title
	2.3.2.33. timezone
	2.3.2.34. url
	2.3.2.35. user

	Appendix A. Definitions
	1. Media file identifiers

